Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.

Inorg Chem

Department of Chemistry and Ilse Katz Center for Nanoscience and Nanotechnology, Ben-Gurion University of the Negev, 84105 Be'er Sheva, Israel.

Published: February 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hematite (α-Fe2O3) is one of most investigated oxides for energy applications and specifically for photocatalysis. Many approaches are used to prepare well-controlled films of hematite with good photocatalytic performance. However, most of these methods suffer from a number of disadvantages, such as the small quantities of the product, and the assembly of the nanostructures is usually a secondary process. Herein, we present a facile and large-scale synthesis of mesoporous hematite structures directly on various substrates at moderate temperature and study their photoelectrochemical (PEC) properties. Our approach is based on thermal decomposition of iron acetate directly on a substrate followed by an annealing process in air to produce a continuous mesoporous film of α-Fe2O3, with good control of the size of the pores. Improving the PEC properties of iron oxide was achieved by deposition of CoO domains, which were formed by thermal decomposition of cobalt acetate directly onto the hematite surface to produce α-Fe2O3/CoO nanostructures. PEC measurements of the hematite film before and after CoO growth were tested. Two methods were used to deposit the cobalt material: (a) thermal decomposition and (b) the most typically used method, adsorption of cobalt salt. The photocurrent of pure hematite was 0.25 mA/cm(2) at 1.23 V versus reversible hydrogen electrode (RHE), while modification of the hematite surface using the thermal decomposition method showed 180% improvement (0.7 mA/cm(2) at 1.23 V vs RHE) and 40% improvement (0.35 mA/cm(2) at 1.23 V vs RHE) via the adsorption method. Moreover, the onset potential was shifted by 130 and 70 mV when the surface of the hematite was modified by the thermal decomposition and adsorption methods, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic403027rDOI Listing

Publication Analysis

Top Keywords

thermal decomposition
24
ma/cm2 123
12
hematite
8
pec properties
8
acetate directly
8
hematite surface
8
123 rhe
8
thermal
6
decomposition
5
decomposition approach
4

Similar Publications

Superparamagnetic iron oxide nanoparticles - From synthesis to nanomedicine.

Biochem Biophys Res Commun

August 2025

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF

To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.

View Article and Find Full Text PDF

Application of lignin extracted from fibers and aminated lignin in anionic dyes contaminated water remediation.

Int J Phytoremediation

September 2025

Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.

View Article and Find Full Text PDF

Tailored esterification of Geraniin for optimal anti-isomerization and anti-oxidation activities.

Food Res Int

November 2025

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570314,

Geraniin (GER), a characteristic polyphenol from the pericarp of rambutan, was severely limited in lipid systems due to its poor lipid solubility and thermal stability. In this study, geraniin oleates (GO) with different degrees of esterification were constructed firstly, which significantly enhanced the lipid solubility (104.24-244.

View Article and Find Full Text PDF