98%
921
2 minutes
20
Clustered, regularly interspaced, short palindromic repeat (CRISPR) RNA-guided nucleases (RGNs) are highly efficient genome editing tools. CRISPR-associated 9 (Cas9) RGNs are directed to genomic loci by guide RNAs (gRNAs) containing 20 nucleotides that are complementary to a target DNA sequence. However, RGNs can induce mutations at sites that differ by as many as five nucleotides from the intended target. Here we report that truncated gRNAs, with shorter regions of target complementarity <20 nucleotides in length, can decrease undesired mutagenesis at some off-target sites by 5,000-fold or more without sacrificing on-target genome editing efficiencies. In addition, use of truncated gRNAs can further reduce off-target effects induced by pairs of Cas9 variants that nick DNA (paired nickases). Our results delineate a simple, effective strategy to improve the specificities of Cas9 nucleases or paired nickases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988262 | PMC |
http://dx.doi.org/10.1038/nbt.2808 | DOI Listing |
Plant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of General Surgery, Faculty of Medicine, Atatürk University, Erzurum, Türkiye.
Rejection following liver and kidney transplantation remains a major barrier to long-term graft survival. Early and reliable detection of rejection is crucial for optimizing patient outcomes and guiding personalized therapeutic approaches. Despite ongoing efforts, currently available serum-based biomarkers often fail to provide sufficient sensitivity and specificity for early diagnosis.
View Article and Find Full Text PDFInt J Implant Dent
September 2025
Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.
Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.
Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.
Microbiol Spectr
September 2025
Department of Clinical Microbiology, Hospital Clínic of Barcelona-ISGlobal, University of Barcelona, Barcelona, Spain.
Unlabelled: Accurate methods to assess viral viability are crucial for determining isolation duration and antiviral therapy in immunocompromised patients. Although cell culture (CC) is the gold standard, it has limitations. Cycle threshold (Ct) values from genomic RNA (gRNA) RT-PCR and subgenomic RNA (sgRNA) RT-PCR have been proposed as markers of active viral replication.
View Article and Find Full Text PDF