Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The design of artificial catalysts able to compete with the catalytic proficiency of enzymes is an intense subject of research. Non-covalent interactions are thought to be involved in several properties of enzymatic catalysis, notably (i) the confinement of the substrates and the active site within a catalytic pocket, (ii) the creation of a hydrophobic pocket in water, (iii) self-replication properties and (iv) allosteric properties. The origins of the enhanced rates and high catalytic selectivities associated with these properties are still a matter of debate. Stabilisation of the transition state and favourable conformations of the active site and the product(s) are probably part of the answer. We present here artificial catalysts and biomacromolecule hybrid catalysts which constitute good models towards the development of truly competitive artificial enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cs60037hDOI Listing

Publication Analysis

Top Keywords

artificial catalysts
8
active site
8
supramolecular catalysis
4
artificial
4
catalysis artificial
4
artificial enzyme
4
enzyme mimics
4
mimics design
4
design artificial
4
catalysts compete
4

Similar Publications

Artificial nacre based on polydopamine functionalized graphene oxide nanosheets constrained palladium nanocluster with enhanced mechanical properties and catalytical functionalities.

Int J Biol Macromol

September 2025

Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien

Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

The degradation of colorless tetracycline hydrochloride (TCH), a widely used antibiotic, is a significant environmental concern due to its persistence in aquatic systems. The zinc sulfide (ZnS) nanoparticle fabricated melamine-formaldehyde polymer (MFP)-based nanocomposite (ZnS-MFP) was prepared via a hydrothermal polymerization method, followed by surface modification through a simple precipitation route. The degradation of TCH through photocatalysis adheres to pseudo-first-order kinetics with a significantly faster rate under natural sunlight than under artificial bulb light.

View Article and Find Full Text PDF

Antiferroelectric SnO Network with Amorphous Surface for Electrochemical N Fixation.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Bioinspired Science Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China.

Electrochemical nitrogen fixation-a sustainable pathway for converting abundant N into NH using renewable energy-holds transformative potential for revolutionizing artificial nitrogen cycles. Nevertheless, even the state-of-the-art catalytic systems also suffer from inadequate N adsorption capacity, which critically limits ammonia production rates and Faradaic efficiency (FE). To overcome this bottleneck, we strategically leveraged the antiferroelectric properties of SnO to establish dipole-dipole interactions with N molecules, synergistically enhancing both N adsorption and activation kinetics.

View Article and Find Full Text PDF

Precise modulation of the electronic structure in transition metals, particularly the d-band center position and spin state, remains a critical challenge to expediting hydrogen evolution reaction (HER) kinetics. Herein, we report a NiPt/Ni-heterostructured catalyst enabling simultaneous optimization of the d-band electronic structure and spin state of Ni through regulation of the NiPt and Ni bridge sites. Combining operando spectroscopy, X-ray absorption spectroscopy, density functional theory, and ab initio molecular dynamics simulations, we establish that the coordination environment and spin states of Ni at the bridge sites were effectively modulated by altering the Pt content, achieving a transition of Ni centers from the low-spin to high-spin state, and optimized intermediate adsorption/desorption behaviors.

View Article and Find Full Text PDF

Fe-N@Graphene Single-Atom Catalyst-Based Nanozyme against Influenza A Virus.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.

Recent COVID-19 pandemic has raised an urgent need for effective strategies to combat viruses that can pose serious health threats to the entire human race. Incorporating antipathogenic functions into everyday objects and personal protective equipment has become increasingly important, motivating the development of general-purpose antiviral materials. Single-atom catalysts, known for superior catalytic performance and maximized atomic utilization, have been explored in various research fields, including artificial nanozymes for bioapplications.

View Article and Find Full Text PDF