Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: To compare the morphology and size of stem cells from two mammals of noticeably different body size.

Design: Observational study.

Setting: The Netherlands.

Participants: A humpback whale (Megaptera novaeangliae) and a laboratory mouse (Mus musculus).

Main Outcome Measures: Morphology and size of mesenchymal stem cells from adipose tissue.

Results: Morphologically, mesenchymal stem cells of the mouse and whale are indistinguishable. The average diameter of 50 mesenchymal stem cells from the mouse was 28 (SD 0.86) µm and 50 from the whale was 29 (SD 0.71) µm. The difference in cell size between the species was not statistically significant. Although the difference in bodyweight between the species is close to two million-fold, the mesenchymal stem cells of each were of similar size.

Conclusions: The mesenchymal stem cells of whales and mice are alike, in both morphology and size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898169PMC
http://dx.doi.org/10.1136/bmj.f6833DOI Listing

Publication Analysis

Top Keywords

stem cells
28
mesenchymal stem
20
morphology size
16
cells mouse
12
size stem
8
mouse whale
8
stem
7
cells
7
mesenchymal
5
morphology
4

Similar Publications

Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.

Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.

View Article and Find Full Text PDF

Background/aims: Despite medical advances in recent decades, the mortality rate of advanced liver cirrhosis remains high. Although liver transplantation remains the most effective treatment, candidate selection is limited by donor availability and alcohol abstinence requirements. Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has shown promise for the treatment of advanced cirrhosis.

View Article and Find Full Text PDF

Functional analysis of secreted tissue inhibitor of metalloproteinases-1 from adult human neural stem cells (ahNSCs) for regeneration and neuroprotection.

BMB Rep

September 2025

Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health

The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF

Aim: To investigate the functional significance of mitophagy in age-related osteogenic decline and the underlying mechanisms using in vivo and in vitro models.

Materials And Methods: An alveolar bone defect model in aged mice and a serial passaging-induced ageing model of human periodontal ligament stem cells (PDLSCs) were established. Osteogenic potential in mice was assessed by micro-CT, immunofluorescence, immunohistochemical analyses and histological staining.

View Article and Find Full Text PDF