98%
921
2 minutes
20
Measures of complexity are sensitive in detecting disease, which has made them attractive candidates for diagnostic biomarkers; one complexity measure that has shown promise in fMRI is power spectrum scale invariance (PSSI). Even if scale-free features of neuroimaging turn out to be diagnostically useful, however, their underlying neurobiological basis is poorly understood. Using modeling and simulations of a schematic prefrontal-limbic meso-circuit, with excitatory and inhibitory networks of nodes, we present here a framework for how network density within a control system can affect the complexity of signal outputs. Our model demonstrates that scale-free behavior, similar to that observed in fMRI PSSI data, can be obtained for sufficiently large networks in a context as simple as a linear stochastic system of differential equations, although the scale-free range improves when introducing more realistic, nonlinear behavior in the system. PSSI values (reflective of complexity) vary as a function of both input type (excitatory, inhibitory) and input density (mean number of long-range connections, or strength), independent of their node-specific geometric distribution. Signals show pink noise (1/f) behavior when excitatory and inhibitory influences are balanced. As excitatory inputs are increased and decreased, signals shift towards white and brown noise, respectively. As inhibitory inputs are increased and decreased, signals shift towards brown and white noise, respectively. The results hold qualitatively at the hemodynamic scale, which we modeled by introducing a neurovascular component. Comparing hemodynamic simulation results to fMRI PSSI results from 96 individuals across a wide spectrum of anxiety-levels, we show how our model can generate concrete and testable hypotheses for understanding how connectivity affects regulation of meso-circuits in the brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2013.12.001 | DOI Listing |
Commun Biol
September 2025
Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.
View Article and Find Full Text PDFJ Neurosci
September 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine; Budapest, Hungary
The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris 75005, France.
Excitatory glycine receptors (eGlyRs), composed of the glycine-binding NMDA receptor subunits GluN1 and GluN3A, have recently emerged as a novel neuronal signaling modality that challenges the traditional view of glycine as an inhibitory neurotransmitter. Unlike conventional GluN1/GluN2 NMDARs, the distribution and role of eGlyRs remain poorly understood. Here, we show that eGlyRs are highly enriched in the ventral hippocampus (VH) and confer distinct properties on this brain region.
View Article and Find Full Text PDFNeuropharmacology
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel; Zelman Center for Brain Science Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel. Electronic address:
Norepinephrine (NE) is a key neuromodulator in the brain with a wide range of functions. It regulates arousal, attention, and the brain's response to stress, enhancing alertness and prioritizing relevant stimuli. In the auditory domain, NE modulates neural processing and plasticity in the auditory cortex by adjusting excitatory-inhibitory balance, tuning curves, and signal-to-noise ratio.
View Article and Find Full Text PDF