98%
921
2 minutes
20
Quadruplexes DNA are present in telomeric DNA as well as in several cancer-related gene promoters and hence affect gene expression and subsequent biological processes. The conformations of G4 provide selective recognition sites for small molecules and thus these structures have become important drug-design targets for cancer treatment. The DNA G-quadruplex binding pentacyclic acridinium salt RHPS4 (1) has many pharmacological attributes of an ideal telomere-targeting agent but has undesirable off-target liabilities. Notably a cardiovascular effect was evident in a guinea pig model, manifested by a marked and sustained increase in QTcB interval. In accordance with this, significant interaction with the human recombinant ß2 adrenergic receptor, and M1, M2 and M3 muscarinic receptors was observed, together with a high inhibition of the hERG tail current tested in a patch clamp assay. Two related pentacyclic structures, the acetylamines (2) and (3), both show a modest interaction with ß2 adrenergic receptor, and do not significatively inhibit the hERG tail current while demonstrating potent telomere on-target properties comparing closely with 1. Of the two isomers, the 2-acetyl-aminopentacycle (2) more closely mimics the overall biological profile of 1 and this information will be used to guide further synthetic efforts to identify novel variants of this chemotype, to maximize on-target and minimize off-target activities. Consequently, the improvement of toxicological profile of these compounds could therefore lead to the obtainment of suitable molecules for clinical development offering new pharmacological strategies in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849007 | PMC |
http://dx.doi.org/10.1186/1756-9966-32-68 | DOI Listing |
FEBS J
April 2018
Dipartimento Di Scienze, Università Roma Tre, Italy.
The pentacyclic acridine RHPS4 is a highly potent and specific G-quadruplex (G4) ligand, which binds and stabilizes telomeric G4 leading to the block of the replication forks at telomeres and consequently to telomere dysfunctionalization. In turn, the cell recognizes unprotected telomeres as DNA double-strand breaks with consequent activation of DNA repair response at telomeres, cellular growth impairment, and death. Data from the literature showed the capability of this compound to sensitize U251MG glioblastoma radioresistant cell line to X-rays sparsely ionizing radiations.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
October 2014
Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, via delle Messi d'Oro 156, 00158, Rome, Italy.
The pentacyclic acridinium salt RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate, compound 1) is one of the most interesting DNA G-quadruplex binding molecules due to its high efficacy in tumor cell growth inhibition both in in vitro models and in vivo against human tumor xenografts in combination with conventional chemotherapeutics. Despite compound 1 having desirable chemical and pharmaceutical properties, its potential as a therapeutic agent is compromised by off-target effects on cardiovascular physiology. In this paper we report a new series of structurally-related compounds which were developed in an attempt to minimize its off-target profile, but maintaining the same favorable chemical and pharmacological features of the lead compound.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
September 2013
Quadruplexes DNA are present in telomeric DNA as well as in several cancer-related gene promoters and hence affect gene expression and subsequent biological processes. The conformations of G4 provide selective recognition sites for small molecules and thus these structures have become important drug-design targets for cancer treatment. The DNA G-quadruplex binding pentacyclic acridinium salt RHPS4 (1) has many pharmacological attributes of an ideal telomere-targeting agent but has undesirable off-target liabilities.
View Article and Find Full Text PDFJ Theor Biol
February 2012
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom.
The pentacyclic acridinium salt RHPS4 displays anti-tumour properties in vitro as well as in vivo and is potentially cell-cycle specific. We have collected experimental data and formulated a compartmental model using ordinary differential equations to investigate how the compound affects cells in each stage of the cell cycle. In addition to a control case in which no drug was used, we treated colorectal cancer cells with three different concentrations of the drug and fitted simulations from our models to experimental observations.
View Article and Find Full Text PDFIntegr Biol (Camb)
August 2011
School of Pharmacy, University of Nottingham, Nottingham, UK.
We describe a mathematical model of cell growth and death and explain how it can be used to integrate data from classic tissue culture experiments on antitumour agents and thus aid the identification of their mechanism of action. Experimental data relating to time- and dose-dependent changes in growth rate, cell cycle distribution, plus apoptotic and senescent fractions, are reinterpreted in terms of modulations to kinetic parameters that describe the rates at which cells transit between phenotypic compartments. The mathematical model is analytical, in the sense that the kinetic parameters are calculated from the experimental data directly, without any fitting process.
View Article and Find Full Text PDF