Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe a mathematical model of cell growth and death and explain how it can be used to integrate data from classic tissue culture experiments on antitumour agents and thus aid the identification of their mechanism of action. Experimental data relating to time- and dose-dependent changes in growth rate, cell cycle distribution, plus apoptotic and senescent fractions, are reinterpreted in terms of modulations to kinetic parameters that describe the rates at which cells transit between phenotypic compartments. The mathematical model is analytical, in the sense that the kinetic parameters are calculated from the experimental data directly, without any fitting process. Since the kinetic parameters are much more directly related to potential molecular targets than are the experimentally measured quantities, this approach can provide a more informative picture of the mechanism of action of the antitumour agent under investigation. We demonstrate the potential value of our model by applying it to data from RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate). This agent is a DNA-interactive pentacyclic acridine for which at least three potential mechanisms of antitumour activity have been identified. Firstly RHPS4 is a telomerase inhibitor, secondly it is a telomerase-independent destabiliser of telomeres, and thirdly it is a telomere-independent binder to genomic DNA. Each mechanism can induce a separate, but overlapping, pattern of cellular responses, making the interpretation of tissue culture data very complex. Here we study the time- and dose-dependent effects of RHPS4 on the HCT116 cell line, and develop a five-compartment mathematical model to interpret the data. Application of the model to the data suggests that RHPS4 increases the rate at which cells became senescent state but, rather surprisingly, actually inhibits the rate of cell death. As a control, we also apply the model to data describing the time- and dose-dependent effects of doxorubicin since its mechanism of action is better characterised.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c1ib00025jDOI Listing

Publication Analysis

Top Keywords

tissue culture
12
mathematical model
12
mechanism action
12
time- dose-dependent
12
kinetic parameters
12
data
9
culture data
8
data application
8
antitumour agent
8
experimental data
8

Similar Publications

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF

Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies.

Sci Transl Med

September 2025

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the efficacy of the full-thickness palatal graft technique (FTPGT) and the coronally advanced flap with subepithelial connective tissue graft (CAF + SCTG) in achieving complete root coverage (CRC) in single gingival recessions (GR).

Methods: Forty healthy patients with a single RT1 GR were randomized into two groups: 20 treated with CAF + SCTG and 20 with FTPGT. Baseline and 12-month measurements of GR, keratinized tissue width (KTW), probing depth (PD), clinical attachment level (CAL), and gingival thickness (GT) were recorded.

View Article and Find Full Text PDF