98%
921
2 minutes
20
It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a) grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b) grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852021 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080889 | PLOS |
Eur J Neurol
September 2025
Department of Neurology and Center for Translational and Behavioral Neurosciences, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.
Background: Changes in handgrip strength have recently been adapted as clinical biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) under the assumption of a disease-specific peripheral neuromuscular dysfunction. However, some have proposed that strength impairments in ME/CFS are better explained by alterations in higher-order motor control. In serial measurements, exertion can been assessed through analysis of variation, since maximal voluntary contractions exhibit lower coefficients of variation (CV) than submaximal contractions.
View Article and Find Full Text PDFVaccine
September 2025
Brighton Collaboration, The Task Force for Global Health, Atlanta, GA, United States of America.
Vaccine safety surveillance systems are vital for the post-market safety monitoring of novel and well-established vaccines, given the sample size, representativeness and follow-up time in clinical trials. The introduction of COVID-19 vaccines during the SARS-CoV-2 pandemic presented unprecedented challenges for safety surveillance. Here, we discuss methodologic considerations for epidemiologic study design and real world data for passive and active surveillance systems for COVID-19 vaccines in the United States (U.
View Article and Find Full Text PDFInt J Exerc Sci
September 2025
Warrior Research Center, Department of Kinesiology, Auburn University, Auburn, AL., USA.
Military personnel face rigorous physical and cognitive demands critical for operational readiness and long-term health. This study evaluated body composition, cognitive performance, and physical fitness metrics in non-entry-level service members to inform tailored fitness interventions. This cross-sectional study analyzed data from Air Command Staff College personnel (N = 307; 89 females, 218 males; age: 37 ± 5 years) at Air University, Maxwell Air Force Base.
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2025
Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
Fatigability refers to the inability of the neuromuscular system to generate enough force to produce movements to meet task challenges. Fatigability has a central and a peripheral component linked via the neuromuscular system, but how these two components interact as fatigue develops lacks a complete understanding. The effects of fatigability are experienced in healthy humans but also accompany various disorders, often exacerbating their symptoms.
View Article and Find Full Text PDFThis study aimed to evaluate the resistance of anastomoses to mechanical traction in an ex vivo biomechanical experiment, to determine the most resistant manual suture for restoring digestive tract continuity after various types of gastric resection for cancer. Materials and methods: The tensile strength of different types of anastomoses was compared ex vivo using porcine esophagus, stomach, and small intestine. The test setup included a tensile testing device, which applied a controlled force on the anastomoses until they broke, which was recorded for each type of anastomosis and was expressed in N.
View Article and Find Full Text PDF