Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phylomes (comprehensive sets of gene phylogenies for organisms) are built to investigate fundamental questions in genomics and evolutionary biology, such as those pertaining to the detection and characterization of horizontal gene transfer in microbes. To address these questions, phylome construction demands rigorous yet efficient phylogenetic methods. Currently, many sequence alignment and tree-building models can analyze several thousands of genes in a high-throughput manner. However, the phylogenetics is complicated by variability in sequence divergence and different taxon sampling among genes. In addition, homolog selection for automated approaches often relies on arbitrary sequence similarity thresholds that are likely inappropriate for all genes in a genome. To investigate the effects of automated homolog selection on the detection of horizontal gene transfer using phylogenomics, we constructed the phylome of a transcriptome assembly of Alexandrium tamarense, a microbial eukaryote with a history of horizontal and endosymbiotic gene transfer, using seven sequence similarity thresholds for selecting putative homologs to be included in phylogenetic analyses. We show that no single threshold recovered informative trees for the majority of A. tamarense unigenes compared to the pooled results from all pipeline iterations. As much as 29% of trees built could have misleading phylogenetic relationships that appear biased in favor of those otherwise indicative of horizontal gene transfer. Perhaps worse, nearly half of the unigenes were represented by a single tree built at just one threshold, making it difficult to assess the validity of phylogenetic relationships recovered in these cases. However, combining the results from several pipeline iterations maximizes the number of informative phylogenies. Moreover, when the same phylogenetic relationship for a given unigene is recovered in multiple pipeline iterations, conclusions regarding gene origin are more robust to methodological artifact. Using these methods, the majority of A. tamarense unigenes showed evolutionary relationships indicative of vertical inheritance. Nevertheless, many other unigenes revealed diverse phylogenetic associations, suggestive of possible gene transfer. This analysis suggests that caution should be used when interpreting the results from phylogenetic pipelines implementing a single similarity threshold. Our approach is a practical method to mitigate the problems associated with automated sequence selection in phylogenomics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2013.11.016DOI Listing

Publication Analysis

Top Keywords

gene transfer
24
horizontal gene
16
pipeline iterations
12
phylogenetic
8
detection horizontal
8
gene
8
transcriptome assembly
8
homolog selection
8
sequence similarity
8
similarity thresholds
8

Similar Publications

Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.

View Article and Find Full Text PDF

Clustered regularly interspaced palindromic repeats (CRISPR)-associated transposons (CAST) consist of an integration between certain class 1 or class 2 CRISPR-Cas systems and Tn7-like transposons. Class 2 type V-K CAST systems are restricted to cyanobacteria. Here, we identified a unique subgroup of type V-K systems through phylogenetic analysis, classified as V-K_V2.

View Article and Find Full Text PDF

Nucleic acid-based therapeutics, such as oncolytic virotherapy or gene therapy, would benefit greatly from a reporter gene that induces endogenous production of a protein biomarker to noninvasively track the delivery, persistence, and spread with imaging. Several chemical exchange saturation transfer (CEST) reporter proteins detectable by magnetic resonance imaging (MRI) have been demonstrated to have high sensitivity. However, to date none can provide strong CEST contrast at a distinct resonance from that of endogenous proteins, limiting their specificity.

View Article and Find Full Text PDF

Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.

View Article and Find Full Text PDF

Communities of plasmids as strategies for antimicrobial resistance gene survival in wastewater treatment plant effluent.

NPJ Antimicrob Resist

September 2025

Antimicrobial Resistance & Microbiome Research Group, Department of Biology, The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co, Kildare, Ireland.

Plasmids facilitate antimicrobial resistance (AMR) gene spread via horizontal gene transfer, yet the mobility of genes in wastewater treatment plant (WWTP) resistomes remains unclear. We sequenced 173 circularised plasmids transferred from WWTP effluent into Escherichia coli and characterised their genetic content. Multiple multidrug-resistant plasmids were identified, with a significant number of mega-plasmids (>100 kb).

View Article and Find Full Text PDF