98%
921
2 minutes
20
Smad3 is a key mediator of the transforming growth factor (TGF)-β1 signaling pathway that plays central role in inflammation and fibrosis. In present study, we evaluated the effect of Smad3 deficiency in Smad3-/- mice with carbon tetrachloride (CCl4)-induced liver fibrosis. The animals were received CCl4 or olive oil three times a week for 4 weeks. Histopathological analyses were performed to evaluate the fibrosis development in the mice. Alteration of protein expression controlled by Smad3 was examined using a proteomic analysis. CCl4-induced liver fibrosis was rarely detected in Smad3-/- mice compared to Smad3+/+. Proteomic analysis revealed that proteins related to antioxidant activities such as senescence marker protein-30 (SMP30), selenium-binding proteins (SP56) and glutathione S-transferases (GSTs) were up-regulated in Smad3-/- mice. Western blot analysis confirmed that SMP30 protein expression was increased in Smad3-/- mice. And SMP30 levels were decreased in CCl4-treated Smad3+/+ and Smad3-/- mice. These results indicate that Smad3 deficiency influences the proteins level related to antioxidant activities during early liver fibrosis. Thus, we suggest that Smad3 deteriorate hepatic injury by inhibitor of antioxidant proteins as well as mediator of TGF-β1 signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876072 | PMC |
http://dx.doi.org/10.3390/ijms141223700 | DOI Listing |
Allergol Immunopathol (Madr)
September 2025
Department of Pediatrics, Ankang Hospital of Traditional Chinese Medicine, Ankang, China;
Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2025
Graduate School of Cardiology, Bengbu Medical University, Bengbu 233000, Anhui, China.
Chronic stress-induced cardiac hypertrophy remains a critical precursor to heart failure, with current therapies limited by incomplete mechanistic targeting. Cyclin-dependent kinases (CDKs), pivotal regulators of cell cycle and stress signaling, are emerging therapeutic targets in cardiovascular pathologies. Using bioinformatics analysis of human hypertrophic cardiomyopathy datasets (GSE5500, GSE136308) and a murine transverse aortic constriction (TAC) model, we investigated the therapeutic effects of the CDK inhibitor R547 (10 mg/kg, intraperitoneal every 3 days) on pressure overload-induced cardiac remodeling.
View Article and Find Full Text PDFIntroduction: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of fluid filled cysts, progressive fibrosis and chronic inflammation, often leading to kidney failure. Renal fibrosis in ADPKD is primarily driven by myofibroblast activation and excessive extracellular matrix (ECM) accumulation, which contribute to disease progression. Here we investigated the therapeutic potential of pirfenidone, an antifibrotic drug, on myofibroblast activity, ECM production, and ADPKD progression.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center fo
Persistent overactivation of the renal sympathetic nervous system drives kidney inflammation and fibrosis. Macrophages contribute to fibrogenesis by secreting various pro-fibrogenic mediators. However, whether the sympathetic nervous system regulates renal fibrosis by modulating macrophage-fibroblast interaction remains unclear.
View Article and Find Full Text PDFJ Ethnopharmacol
August 2025
Shandong University of Traditional Chinese Medicine Second Affiliated Hospital, Jinan, 250001, People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Cervi Cornu Pantotrichum, a cornerstone of traditional medicine, is prized for its bone-enhancing and metabolic-regulating effects. Pilose antler peptide (PAP), extracted from this remedy, offers a promising solution for diabetic fracture nonunion, a debilitating condition marked by hyperglycemia-impaired bone healing.
Aim Of The Study: This study investigates PAP's efficacy in accelerating diabetic fracture repair and delineates its molecular mechanisms, merging ethnopharmacological heritage with modern science.