98%
921
2 minutes
20
Background: Percutaneous osseointegrated prosthetic (POP) devices have been used clinically in Europe for decades. Unfortunately, their introduction into the United States has been delayed, in part due to the lack of data documenting the progression of osseointegration and mechanical stability.
Questions/purposes: We determined the progression of bone ingrowth into porous-coated POP devices and established the interrelationship with mechanical stability.
Methods: After amputation, 64 skeletally mature sheep received a custom porous-coated POP device and were then randomized into five time groups, with subsequent measurement of percentage of bone ingrowth into the available pore spaces (n = 32) and the mechanical pullout force (n = 32).
Results: Postimplantation, there was an accelerated progression of bone ingrowth (~48% from 0 to 3 months) producing a mean pullout force of 5066 ± 1543 N. Subsequently, there was a slower but continued progression of bone ingrowth (~23% from 3 to 12 months) culminating with a mean pullout force of 13,485 ± 1855 N at 12 months postimplantation. There was a high linear correlation (R = 0.94) between the bone ingrowth and mechanical pullout stability.
Conclusions: This weightbearing model shows an accelerated progression of bone ingrowth into the porous coating; the amount of ingrowth observed at 3 months after surgery within the porous-coated POP devices was sufficient to generate mechanical stability.
Clinical Relevance: The data document progression of bone ingrowth into porous-coated POP devices and establish a strong interrelationship between ingrowth and pullout strength. Further human data are needed to validate these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160472 | PMC |
http://dx.doi.org/10.1007/s11999-013-3381-0 | DOI Listing |
Int J Biol Macromol
September 2025
Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China; National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China; Shanghai Key Laboratory of Intelligen
Osteochondral defects caused by trauma, obesity, tumors, and degenerative osteoarthropathies severely impair patients' quality of life. Multilayer tissue engineering scaffolds offer promising strategies for osteochondral repair by enhancing structural biomimicry. In this study, a triple-layer GelMA-alginate-based osteochondral scaffold (TCOS) was fabricated using an enhanced multi-axis, multi-process, multi-material 3D bioprinting system (MAPM-BPS).
View Article and Find Full Text PDFPLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFFront Surg
August 2025
Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Acetabular reconstruction is often challenging in revision hip arthroplasty, especially in the face of moderate to severe acetabular bone deficiency. In some severe bone defects, double-metal tantalum cups can improve the contact area between bone and implants, increase the surface area for bone ingrowth, and better restore the anatomical position of the acetabulum. Furthermore, with a good press-fit, the auxiliary screw has a minimal effect on acetabular cup stability.
View Article and Find Full Text PDFVet Comp Orthop Traumatol
September 2025
Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
The aim of this study was to assess the clinical outcome of treatment of degenerative lumbosacral stenosis in dogs with a stand-alone intervertebral spacer (S group) and combined with a pedicle screw and rod fixation (S + PSRF group) in the lumbosacral junction.Retrospective study. Medical records (2014-2023) were reviewed for dogs treated with a stand-alone intervertebral spacer (S group) or a spacer combined with PSRF (S + PSRF group).
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2025
Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
Precision porous scaffolds hold promise for tissue engineering and regenerative medicine due to their ability to support cell ingrowth and vascularization and mitigate the foreign body reaction (FBR). In previous work, we demonstrated that vat photopolymerization 3D printing enables the fabrication of porous scaffolds with 40 μm interconnected cubical pores. This study aims to do a preliminary evaluation of cellular responses and the FBR to 3D-printed scaffolds with 40 μm cubical pores, in comparison with template-fabricated spherical pores (optimized for healing) and non-porous slabs (negative control).
View Article and Find Full Text PDF