Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2013.10.002DOI Listing

Publication Analysis

Top Keywords

flip angle
12
dess imaging
8
effects profile
4
profile precision
4
precision quantitative
4
quantitative mapping
4
mapping dual-echo
4
dual-echo steady-state
4
steady-state acquisition
4
acquisition dual
4

Similar Publications

Chocolates and other cocoa products represent a multibillion-dollar industry that has faced significant price increases, largely due to a surge in cocoa plant diseases linked to climate change. One potential solution for mitigating cocoa prices involves the use of cocoa butter equivalents, substitutes, or replacers. Consequently, a rapid method for simultaneously determining multiple properties of cocoa derivatives can serve as a valuable tool for research and development of new products, quality control, and regulatory agencies to ensure compliance with cocoa product standards.

View Article and Find Full Text PDF

Purpose: Supine breast MRI has the potential to improve over standard prone breast magnetic resonance imaging (MRI) in terms of efficiency and image quality, image alignment with diagnostic and treatment procedures, and overall accessibility. This study aims to characterize potential technical challenges of imaging in the supine position: (i)  field inhomogeneities, (ii)  variations, (iii) respiratory-induced breast motion, and (iv) supine breast geometry.

Methods: Ten healthy subjects were scanned at 3T in both prone and supine positions to quantify and compare (i) and (ii) between both positions, and to assess (iii) in the supine position.

View Article and Find Full Text PDF

Purpose: To develop a rapid 2D free-running myocardial mapping technique that is robust to through-plane respiratory motion.

Methods: A free-running golden angle radial sequence consisting of encoding and self-navigated auto motion calibration (SNAC) was developed. The encoding adopted inversion recovery (IR) prepared interleaved multi-slice acquisition with optimized inter-slice gap to ensure a uniform excitation of the middle slice regardless of through-plane respiratory motion.

View Article and Find Full Text PDF

Feasibility of tagged MRI at 0.55 T.

Magn Reson Med

September 2025

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA.

Purpose: To determine the feasibility of tagged MRI at 0.55 T and tag persistence for cardiac and speech production applications. This is particularly challenging due to the short muscle T at 0.

View Article and Find Full Text PDF

Purpose: To implement, optimize, and validate parallel imaging (PI)-accelerated, 2D, flip angle modulated (FAM) chemical shift-encoded quantification of liver proton-density fat fraction (PDFF), with motion insensitivity.

Methods: The optimization cost function that determines flip angles in FAM was generalized for PI. Phantom studies and prospective studies in volunteers with varying liver fat levels were performed.

View Article and Find Full Text PDF