Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1,000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2013.09.062DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
mycotoxins streams
8
treatment plant
8
mycotoxins
6
streams
5
mycotoxins diffuse
4
diffuse point
4
point source
4
source contributions
4
contributions natural
4

Similar Publications

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

Arsenic-induced nephrotoxicity: Mechanisms, biomarkers, and preventive strategies for global health.

Vet World

July 2025

Department of Basic Medical Sciences, Division of Physiology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Arsenic exposure remains a critical global health concern, with growing evidence linking it to significant kidney dysfunction. This review examines the underlying mechanisms of arsenic-induced nephrotoxicity, including oxidative stress, mitochondrial dysfunction, inflammation, and programmed cell death, which collectively contribute to damage in the glomeruli and renal tubules. Chronic exposure is associated with proteinuria, renal impairment, and an increased risk of chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background And Aim: Hospital effluents are a major source of environmental contaminants, harboring pathogenic bacteria, toxic trace metals, and high organic loads. This study aimed to evaluate the bacteriological and physicochemical profiles of wastewater discharged from three coastal hospitals in Oran, Algeria, and to assess the associated public and livestock health risks under the One Health approach.

Materials And Methods: A cross-sectional study was conducted from January 2023 to February 2024, involving monthly sampling at three hospitals and one drainage collector.

View Article and Find Full Text PDF

This study investigated the efficacy of two microalgae treatment systems (Chlorella vulgaris monoculture and a Chlorella vulgaris-S395-2-Clonostachys rosea symbiotic system) in treating aquaculture wastewater, under varying concentrations of synthetic strigolactone analog (GR24). By exposing the systems to four GR24 doses (0, 10, 10, and 10 M), we examined the impact on biomass growth, photosynthesis, and wastewater treatment. Elevated GR24 concentrations bolstered metabolism and photosynthesis in the systems, fostering rapid symbiont growth and enhanced treatment efficiency.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology represents an innovative and high-efficiency desalination approach. This technology plays a crucial role in relieving the shortage of worldwide freshwater resources. However, the interfacial evaporator still faces great challenges in terms of high efficiency and ensuring long-term evaporation stability, among other aspects.

View Article and Find Full Text PDF