TASK-2 channels contribute to pH sensitivity of retrotrapezoid nucleus chemoreceptor neurons.

J Neurosci

Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China, Université de Nice-Sophia Antipolis, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Ph

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phox2b-expressing glutamatergic neurons of the retrotrapezoid nucleus (RTN) display properties expected of central respiratory chemoreceptors; they are directly activated by CO2/H(+) via an unidentified pH-sensitive background K(+) channel and, in turn, facilitate brainstem networks that control breathing. Here, we used a knock-out mouse model to examine whether TASK-2 (K2P5), an alkaline-activated background K(+) channel, contributes to RTN neuronal pH sensitivity. We made patch-clamp recordings in brainstem slices from RTN neurons that were identified by expression of GFP (directed by the Phox2b promoter) or β-galactosidase (from the gene trap used for TASK-2 knock-out). Whereas nearly all RTN cells from control mice were pH sensitive (95%, n = 58 of 61), only 56% of GFP-expressing RTN neurons from TASK-2(-/-) mice (n = 49 of 88) could be classified as pH sensitive (>30% reduction in firing rate from pH 7.0 to pH 7.8); the remaining cells were pH insensitive (44%). Moreover, none of the recorded RTN neurons from TASK-2(-/-) mice selected based on β-galactosidase activity (a subpopulation of GFP-expressing neurons) were pH sensitive. The alkaline-activated background K(+) currents were reduced in amplitude in RTN neurons from TASK-2(-/-) mice that retained some pH sensitivity but were absent from pH-insensitive cells. Finally, using a working heart-brainstem preparation, we found diminished inhibition of phrenic burst amplitude by alkalization in TASK-2(-/-) mice, with apneic threshold shifted to higher pH levels. In conclusion, alkaline-activated TASK-2 channels contribute to pH sensitivity in RTN neurons, with effects on respiration in situ that are particularly prominent near apneic threshold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3792448PMC
http://dx.doi.org/10.1523/JNEUROSCI.2451-13.2013DOI Listing

Publication Analysis

Top Keywords

rtn neurons
20
task-2-/- mice
16
neurons task-2-/-
12
task-2 channels
8
channels contribute
8
contribute sensitivity
8
retrotrapezoid nucleus
8
neurons
8
rtn
8
background channel
8

Similar Publications

The retrotrapezoid nucleus, located in the parafacial medullary region (RTN/pFRG), is crucial for respiratory activity and central chemoreception. Recent evidence suggests that neuromodulation, including peptidergic signalling, can influence the CO/H sensitivity of RTN neurons. The paraventricular nucleus of the hypothalamus (PVN) projects to the ventral medullary surface, including the RTN, and is considered the primary source of oxytocin to the brainstem.

View Article and Find Full Text PDF

The brain regulates breathing in response to changes in CO/H by a process referred to as respiratory chemoreception. The retrotrapezoid nucleus (RTN) is essential for this function. RTN neurons are intrinsically activated by CO/H.

View Article and Find Full Text PDF

The retrotrapezoid nucleus (RTN) of rodents is located ventral to the facial motor nucleus (7N) and consists of acid-sensitive neurons that activate breathing and mediate the central component of the ventilatory response to hypercapnia. In rodents, RTN neurons can be histologically identified by the presence of paired-like homeobox 2B positive nuclei (Phox2b +) and the absence of cytoplasmic choline acetyltransferase (ChAT-) and tyrosine hydroxylase (TH-). Up to 50% of rodent RTN neurons synthesise galanin, and 88% express pituitary adenylate cyclase activating polypeptide (PACAP).

View Article and Find Full Text PDF

The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation, contains Phox2b/neuromedin-B () propriobulbar neurons. These neurons, stimulated by CO/H, regulate breathing to prevent respiratory acidosis.

View Article and Find Full Text PDF

Objectives: Arginine vasopressin (AVP) is synthesized in the magnocellular supraoptic nucleus and paraventricular nuclei of the hypothalamus, where AVP neurons function under a consistently high demand for AVP production. AVP neurons are subject to endoplasmic reticulum (ER) stress even under basal conditions, and this ER stress is further exacerbated when AVP production increases due to dehydration. Reticulon (RTN) is essential for ER formation and stabilization and plays a critical role in membrane morphogenesis within the ER.

View Article and Find Full Text PDF