Publications by authors named "Nicholas J Burgraff"

The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation, contains Phox2b/neuromedin-B () propriobulbar neurons. These neurons, stimulated by CO/H, regulate breathing to prevent respiratory acidosis.

View Article and Find Full Text PDF

The primary cause of death from opioid overdose is opioid-induced respiratory depression (OIRD), characterized by severe suppression of respiratory rate, destabilized breathing patterns, hypercapnia, and heightened risk of apnea. The retrotrapezoid nucleus (RTN), a critical chemosensitive brainstem region in the rostral ventrolateral medullary reticular formation contains Phox2b /Neuromedin-B ( ) propriobulbar neurons. These neurons, stimulated by CO /H , regulate breathing to prevent respiratory acidosis.

View Article and Find Full Text PDF

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

This study provides an in-depth analysis of the distinct consequences of the opioid drugs morphine and fentanyl during opioid-induced respiratory depression (OIRD). We explored the physiological implications of both drugs on ventilation and airway patency in anaesthetized mice. Our results revealed a similar reduction in respiratory frequency with equivalent scaled dosages of fentanyl and morphine, though the onset of suppression was more rapid with fentanyl.

View Article and Find Full Text PDF

Sighs prevent the collapse of alveoli in the lungs, initiate arousal under hypoxic conditions, and are an expression of sadness and relief. Sighs are periodically superimposed on normal breaths, known as eupnea. Implicated in the generation of these rhythmic behaviors is the preBötzinger complex (preBötC).

View Article and Find Full Text PDF

Chronic hypercapnia (CH) is a hallmark of respiratory-related diseases, and the level of hypercapnia can acutely or progressively become more severe. Previously, we have shown time-dependent adaptations in steady-state physiology during mild (arterial Pco ∼55 mmHg) and moderate (∼60 mmHg) CH in adult goats, including transient (mild CH) or sustained (moderate CH) suppression of acute chemosensitivity suggesting limitations in adaptive respiratory control mechanisms as the level of CH increases. Changes in specific markers of glutamate receptor plasticity, interleukin-1ß, and serotonergic modulation within key nodes of cardiorespiratory control do not fully account for the physiological adaptations to CH.

View Article and Find Full Text PDF
Article Synopsis
  • - Chronic hypercapnia (CH) is linked to chronic lung disease and increases the likelihood of serious health issues due to acute exacerbations of CO2 levels, but its specific impact on tolerance during severe CO2 challenges is not well understood.
  • - The study investigated three groups of goats subjected to different levels of CO2 exposure, finding that mild CH increased ventilation responses but had variable effects on sensitivity to CO2.
  • - Moderate CH showed significant suppression in the body's normal response to acute CO2 challenges, suggesting that it may limit physiological adaptations needed during severe hypercapnia.
View Article and Find Full Text PDF

Cellular and network properties must be capable of generating rhythmic activity that is both flexible and stable. This is particularly important for breathing, a rhythmic behavior that dynamically adapts to environmental, behavioral, and metabolic changes from the first to the last breath. The pre-Bötzinger complex (preBötC), located within the ventral medulla, is responsible for producing rhythmic inspiration.

View Article and Find Full Text PDF

Death from opioid overdose is typically caused by opioid-induced respiratory depression (OIRD). A particularly dangerous characteristic of OIRD is its apparent unpredictability. The respiratory consequences of opioids can be surprisingly inconsistent, even within the same individual.

View Article and Find Full Text PDF

The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the μ-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBötzinger Complex (preBötC). To unravel the cellular- and network-level consequences of MOR activation in the preBötC, MOR-expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo.

View Article and Find Full Text PDF

Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death.

View Article and Find Full Text PDF

Shi et al. recently identified a brainstem peptidergic circuit in mice that is activated at birth and stabilizes breathing during the transition from the intra-utero environment to air breathing. This network remains important for maintaining stable breathing and respiratory homeostasis throughout development, and deficiencies in this network may be linked to sudden infant death syndrome (SIDS).

View Article and Find Full Text PDF

Chronic hypercapnia (CH) is a hallmark of respiratory diseases such as chronic obstructive pulmonary disease. In such patients, mechanical ventilation is often used to restore normal blood-gas homeostasis. However, little is known regarding physiological changes and neuroplasticity within physiological control networks after termination of CH.

View Article and Find Full Text PDF

Despite the prevalence of CO retention in human disease, little is known about the adaptive neurobiological effects of chronic hypercapnia. We have recently shown 30-d exposure to increased inspired CO (InCO) leads to a steady-state ventilation that exceeds the level predicted by the sustained acidosis and the acute CO/H chemoreflex, suggesting plasticity within respiratory control centers. Based on data showing brainstem changes in aminergic and inflammatory signaling during carotid body denervation-induced hypercapnia, we hypothesized chronic hypercapnia will lead to similar changes.

View Article and Find Full Text PDF

Cognitive impairment is associated with multiple human diseases that have in common chronic hypercapnia. However, the mechanisms leading to chronic hypercapnia-induced cognitive decline are not known. We have previously shown chronic hypercapnia through exposure to increased inspired CO (6% InCO) in conscious goats caused an immediate (within hours) and sustained decline in cognitive performance during a shape discrimination test.

View Article and Find Full Text PDF

Patients that retain CO in respiratory diseases such as chronic obstructive pulmonary disease (COPD) have worse prognoses and higher mortality rates than those with equal impairment of lung function without hypercapnia. We recently characterized the time-dependent physiologic effects of chronic hypercapnia in goats, which suggested potential neuroplastic shifts in ventilatory control mechanisms. However, little is known about how chronic hypercapnia affects brainstem respiratory nuclei (BRN) that control multiple physiologic functions including breathing.

View Article and Find Full Text PDF

Key Points: Chronic hypercapnia per se has distinct effects on the mechanisms regulating steady-state ventilation and the CO /H chemoreflex. Chronic hypercapnia leads to sustained hyperpnoea that exceeds predicted ventilation based upon the CO /H chemoreflex. There is an integrative ventilatory, cardiovascular and metabolic physiological response to chronic hypercapnia.

View Article and Find Full Text PDF

Neuromodulator interdependence posits that changes in one or more neuromodulators are compensated by changes in other modulators to maintain stability in the respiratory control network. Herein, we studied compensatory neuromodulation in the hypoglossal motor nucleus (HMN) after chronic implantation of microtubules unilaterally ( n = 5) or bilaterally ( n = 5) into the HMN. After recovery, receptor agonists or antagonists in mock cerebrospinal fluid (mCSF) were dialyzed during the awake and non-rapid eye movement (NREM) sleep states.

View Article and Find Full Text PDF

Pulmonary ventilation (V̇) in awake and sleeping goats does not change when antagonists to several excitatory G protein-coupled receptors are dialyzed unilaterally into the ventral respiratory column (VRC). Concomitant changes in excitatory neuromodulators in the effluent mock cerebral spinal fluid (mCSF) suggest neuromodulatory compensation. Herein, we studied neuromodulatory compensation during dialysis of agonists to inhibitory G protein-coupled or ionotropic receptors into the VRC.

View Article and Find Full Text PDF

Unilateral dialysis of the broad-spectrum muscarinic receptor antagonist atropine (50 mM) into the ventral respiratory column [(VRC) including the pre-Bötzinger complex region] of awake goats increased pulmonary ventilation (V̇i) and breathing frequency (f), conceivably due to local compensatory increases in serotonin (5-HT) and substance P (SP) measured in effluent mock cerebral spinal fluid (mCSF). In contrast, unilateral dialysis of a triple cocktail of antagonists to muscarinic (atropine; 5 mM), neurokinin-1, and 5-HT receptors does not alter V̇i or f, but increases local SP. Herein, we tested hypotheses that ) local compensatory 5-HT and SP responses to 50 mM atropine dialyzed into the VRC of goats will not differ between anesthetized and awake states; and ) bilateral dialysis of the triple cocktail of antagonists into the VRC of awake goats will not alter V̇i or f, but will increase local excitatory neuromodulators.

View Article and Find Full Text PDF