Dual LC-MS platform for high-throughput proteome analysis.

J Proteome Res

Department of Pathology, Dalhousie University, 11th Floor Tupper Medical Building, Room 11B, Halifax, NS B3H 4R2, Canada.

Published: December 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe a dual-column interface for parallel chromatography to improve throughput during LC-MS experimentation. The system employs a high-voltage switch to operate two capillary column/nanospray emitters fixed at the MS orifice. Sequentially loading one column while operating the second nearly doubles the LC-MS duty cycle. Given the innate run-to-run variation of a nanospray LC-MS (12% RSD peak area; 2% retention time), the intercolumn variability of the platform showed no meaningful difference for proteome analysis, with equal numbers of proteins and peptides identified per column. Applied to GeLC analysis of an E. coli extract, throughput was increased using one of three methods: doubling the number of replicates, increasing the LC gradient length, or sectioning the gel into twice as many fractions. Each method increased the total number of identifications as well as detection throughput (number of peptides/proteins identified per hour). The greatest improvement was achieved by doubling the number of gel slices (10 vs 5). Analysis on the dual column platform provided a 26% increase in peptides identified per hour (24% proteins). This translates into ~50% more total proteins and peptides identified in the experiment using the dual LC-MS platform.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr400738aDOI Listing

Publication Analysis

Top Keywords

peptides identified
12
dual lc-ms
8
lc-ms platform
8
proteome analysis
8
proteins peptides
8
doubling number
8
identified hour
8
platform
4
platform high-throughput
4
high-throughput proteome
4

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

Expression of long non-coding RNAs MALAT1, MEG3, and XIST in gestational diabetes mellitus: a cross-sectional study.

Acta Diabetol

September 2025

Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.

Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.

View Article and Find Full Text PDF

Proteomic characterization and lethality of the venom of the Black Judean scorpion, Hottentotta judaicus (Buthidae): expanded toxin diversity and revisited toxicological significance.

Arch Toxicol

September 2025

Laboratorio de Proteómica, Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, 11501, Costa Rica.

The scorpion Hottentotta judaicus inhabits the Levant region of the Middle East, including Lebanon, Jordan, Palestine, and Israel. While previous research focused on its insecticidal properties and sodium-channel-targeting toxins, its venom remains largely unexplored using modern proteomic approaches. We analyzed the venom composition of H.

View Article and Find Full Text PDF

Nasal microbiome inhabitants with anti- activity.

Microbiol Spectr

September 2025

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.

View Article and Find Full Text PDF

Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.

Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).

View Article and Find Full Text PDF