Xeroderma pigmentosum complementation group f polymorphisms influence risk of glioma.

Asian Pac J Cancer Prev

Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.

Published: March 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We conducted an exploratory investigation of whether variation in six common SNPs of xeroderma pigmentosum complementation group F (XPF) is associated with risk of glioma in a Chinese population. Six single nucleotide polymorphisms (SNPs) were genotyped in 207 glioma cases and 236 cancer-free controls by a 384-well plate format on the Sequenom MassARRAY platform (Sequenom, San Diego, USA). The rs1800067 G and rs2276466 G allele frequencies were significantly higher in the glioma group than controls. Individuals with the rs1800067 GG genotype were at greater risk of glioma when compared with the A/A genotype in the codominant model, with an OR (95% CI) of 2.63 (1.04-7.25). The rs2276466 polymorphism was significantly associated with moderate increased risk of glioma in codominant and dominant models, with ORs (95% CI) of 1.90 (1.05-3.44) and 1.55 (1.07-2.47), respectively. The combination genotype of rs1800067 G and rs2276466 G alleles was associated with a reduced risk of glioma (OR=0.44, 95% CI=0.19-0.98). These findings indicate that genetic variants of the XPF gene have critical functions in the development of glioma.

Download full-text PDF

Source
http://dx.doi.org/10.7314/apjcp.2013.14.7.4083DOI Listing

Publication Analysis

Top Keywords

risk glioma
20
xeroderma pigmentosum
8
pigmentosum complementation
8
complementation group
8
glioma
8
rs1800067 rs2276466
8
risk
5
group polymorphisms
4
polymorphisms influence
4
influence risk
4

Similar Publications

Background: Among childhood cancer survivors, germline rare variants in autosomal dominant cancer susceptibility genes (AD CSGs) could increase subsequent neoplasm (SNs) risks, but risks for rarer SNs and by age at onset are not well understood.

Methods: We pooled the Childhood Cancer Survivor Study and St Jude Lifetime Cohort (median follow-up = 29.7 years, range 7.

View Article and Find Full Text PDF

Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is an extremely aggressive brain tumor, marked by restricted therapeutic possibilities and a generally unfavorable prognosis. GBM's complexity and heterogeneity necessitate comprehensive genetic and immunological profiling to enhance therapeutic strategies.

Methods: The study integrated The Cancer Genome Atlas (TCGA) and Integrative Epidemiology Unit Open Genome-Wide Association Studies (IEU OpenGWAS) data to identify genetic factors influencing GBM using expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Evidence for cognitive compensation mechanism in the postoperative delirium: a prospective multi-modal neuroimaging cohort study.

Brain Imaging Behav

September 2025

Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, South 4th Ring West Road 119, Fengtai District, Beijing, 100070, China.

To explore the effect of brain cognitive compensation on the pathogenesis of postoperative delirium (POD) in the frontal glioma patients. Eighty-four adult patients with unilateral frontal glioma who underwent elective craniotomy and 37 healthy controls were recruited. Primary outcomes were POD during postoperative 1-7 days, as assessed by Confusion Assessment Method.

View Article and Find Full Text PDF

Fludioxonil, a fungicide commonly used in agriculture, has been detected in livestock, such as cattle, even though it is primarily intended for use in plants. Unintended exposure to fludioxonil may compromise immune cells, cardiomyocytes, and glioma cells, indicating its potential risk as an environmental hazard. However, research on the detrimental effects of fludioxonil remains scarce, particularly regarding its impact on livestock, which are directly exposed to fludioxonil because of its widespread agricultural use.

View Article and Find Full Text PDF