Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wolbachia blocks dengue virus replication in Drosophila melanogaster as well as in Aedes aegypti. Using the Drosophila model and mutations in the Toll and Imd pathways, we showed that neither pathway is required for expression of the dengue virus-blocking phenotype in the Drosophila host. This provides additional evidence that the mechanistic basis of Wolbachia-mediated dengue virus blocking in insects is more complex than simple priming of the host insect innate immune system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807350PMC
http://dx.doi.org/10.1128/JVI.01522-13DOI Listing

Publication Analysis

Top Keywords

dengue virus
12
toll imd
8
imd pathways
8
wolbachia-mediated dengue
8
pathways required
4
required wolbachia-mediated
4
dengue
4
virus interference
4
interference wolbachia
4
wolbachia blocks
4

Similar Publications

Objective: To analyze the temporal trend of dengue incidence and lethality rates and the proportions of its serotypes, in the different macro-regions of Brazil, between 2001 and 2022. In particular, the immediate and gradual effects of these indicators were verified in the periods before and after the publication of the National Guidelines for the Prevention and Control of Dengue Epidemics.

Methods: This was an interrupted time series analysis.

View Article and Find Full Text PDF

Dengue Virus Biosafety: An Analysis of Evidence, Global Inconsistencies, and Risk Gaps.

Appl Biosaf

August 2025

Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Introduction: Dengue virus (DENV) poses a significant global health threat, particularly in tropical and subtropical regions, where it is primarily transmitted by spp. mosquitoes. Its biosafety and biosecurity management present unique challenges due to both its vector-borne nature and rare instances of nonvector transmission.

View Article and Find Full Text PDF

Identification of multifunctional T-cell peptide epitopes for the development of DNA vaccines against dengue virus.

Hum Vaccin Immunother

December 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.

View Article and Find Full Text PDF

Dengue virus infection reprograms baseline innate immune gene expression.

Med

September 2025

Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Department of Clinical Translational Research, Singapore General Hospital, Singapo

Background: All three dengue vaccines that have completed phase 3 clinical trials have shown greater efficacy in dengue-seropositive compared to dengue-seronegative individuals. This includes the live-attenuated tetravalent dengue vaccine TAK-003, where immunogenicity in baseline seronegative individuals remains lower after two doses, despite seroconversion after the first dose, compared to baseline seropositive individuals after one dose.

Methods: A whole-genome microarray was used to analyze the host response to TAK-003.

View Article and Find Full Text PDF

Arboviral infections, particularly Dengue and Zika, continue to rise at an alarming rate, with both viruses declared global health emergencies in 2024 and 2016, respectively. The NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) and Zika virus (ZIKV) is highly conserved, making nucleoside-based RdRp inhibitors a promising strategy for antiviral development. While nucleoside analogs have shown strong clinical potential, challenges such as cell permeability, the efficiency of triphosphate conversion, degradation, and mitochondrial toxicity remain.

View Article and Find Full Text PDF