Measurement, variation, and scaling of osteocyte lacunae: a case study in birds.

Bone

Anatomical Sciences Department, Stony Brook University, Stony Brook, NY 11794, USA. Electronic address:

Published: November 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Basic issues surrounding osteocyte biology are still poorly understood, including the variability of osteocyte morphology within and among bones, individuals, and species. Several studies have suggested that the volume or shape of osteocytes (or their lacunae) is related to bone and/or organismal growth rate or metabolism, but the nature of this relationship, if any, is unclear. Furthermore, several studies have linked osteocyte lacuna volume with genome size or growth rate and suggested that osteocyte lacuna volume is unrelated to body size. Herein the scaling of osteocyte lacuna volume with body mass, growth and basal metabolic rates, genome size, and red blood cell size is examined using a broad sample of extant birds within a phylogenetic framework. Over 12,000 osteocyte lacuna axes were measured in a variety of bones from 34 avian and four non-avian dinosaur species. Osteocyte lacunae in parallel-fibered bone are scalene ellipsoids; their morphology and volume cannot be reliably estimated from any single thin section, and using a prolate ellipsoid model to estimate osteocyte lacuna volume results in a substantial (ca. 2-7 times) underestimate relative to true lacunar volume. Orthogonal thin sections reveal that in birds, even when only observing parallel-fibered, primary, cortical bone, intra-skeletal variation in osteocyte lacuna volume and shape is very high (volumes vary by a factor of 5.4 among different bones), whereas variation among homologous bones of the same species is low (1.2-44%; mean=12%). Ordinary and phylogenetically informed bivariate and multiple regressions demonstrate that in birds, osteocyte volume scales significantly but weakly with body mass and mass-specific basal metabolic rate and moderately with genome size, but not with erythrocyte size. Avian whole-body growth rate and osteocyte lacuna volume are weakly and inversely related. Finally, we present the first three-dimensionally calculated osteocyte volumes for several non-avian dinosaurs, which are much larger than previously reported values and smaller than those of large extant avians. Osteocyte volumes estimated from a single transverse section and assuming prolate morphology, as done in previous studies, are relative underestimates in theropod dinosaurs compared to sauropod dinosaurs, raising the possibility that no major change in osteocyte volumes (and genome size) occurred within Theropoda on the lineage leading to birds. Osteocyte volume is intertwined with several organismal attributes whose relative importance varies at a number of hierarchical levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2013.08.010DOI Listing

Publication Analysis

Top Keywords

osteocyte lacuna
28
lacuna volume
24
osteocyte
16
genome size
16
growth rate
12
osteocyte volumes
12
volume
11
scaling osteocyte
8
osteocyte lacunae
8
volume shape
8

Similar Publications

Regular non-steroidal anti-inflammatory drug (NSAID) use increases stress fracture risk, but the mechanisms remain unclear. Here, we used Ptgs2-Y385F mice, which lack cyclooxygenase 2 (COX2) enzyme activity, to test the hypothesis that naproxen decreases strain adaptive bone remodeling in a COX2-dependent manner and decreases bone toughness and fracture resistance through COX2-independent effects. MicroCT and mechanical testing showed minimal baseline differences between Ptgs2-Y385F and wild-type (WT) mice.

View Article and Find Full Text PDF

Osteocytes, the most abundant cells in bone, play a critical role in maintaining bone quality by sensing mechanical loads and orchestrating bone modeling and remodeling. These cells are housed in lacunae and connected by a complex network of canaliculi, through which interstitial fluid flows in response to mechanical loading. Osteocyte-lacuna shape can vary from elongated in healthy lamellar bones subjected to directional loading to more spherical shapes, often seen in flat bones, or in aging and diseases.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative condition of bone characterized by loss of cartilage, subchondral bone sclerosis, osteophyte growth, synovial inflammation, and influenced by biomechanical loading. The loss of articular cartilage is the primary concern of OA, while subchondral bone plays a crucial role in the integrity of articular cartilage, providing mechanical support and nutrition supply and constantly adapting to the changing biomechanical environment in weight-bearing joints. Osteocytes, abundant in subchondral bones, sense mechanical loading and control bone adaptive remodeling.

View Article and Find Full Text PDF

Effective bone tissue regeneration remains pivotal in implant dentistry, particularly for edentulous patients with compromised alveolar bone due to atrophy and sinus pneumatization. Biomaterials are essential for promoting regenerative processes by supporting cellular recruitment, vascularization, and osteogenesis. This study presents the development and characterization of a novel lithography-printed ceramic β-TCP scaffold, with a macro/micro-porous lattice, engineered to optimize osteoconduction and mechanical stability.

View Article and Find Full Text PDF

Fragility fractures are a significant cause of morbidity and mortality in postmenopausal women. Menopause leads to a drastic decline in bone mass and quality with over half of women sustaining fragility fractures without reaching the osteoporotic threshold (T-score < -2.5), underscoring the pivotal role of bone quality in fracture risk.

View Article and Find Full Text PDF