98%
921
2 minutes
20
We investigated whether gingival fibroblasts (GFs) can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs) and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM) from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05) inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732252 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070937 | PLOS |
Mol Biomed
September 2025
National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Orthopedic Surgery, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, China.
The purpose of this study was to investigate potential therapeutic targets for osteosarcoma (OS) and offer hints regarding genetic factors for OS treatment using a bioinformatics method. This study processed 3 OS datasets from the gene expression omnibus database using R software, screening for differentially expressed genes (DEGs). After enrichment analysis, based on expression quantitative trait loci data and the genome-wide association study data of OS, Mendelian randomization analysis was used to screen the genes closely related to OS disease, which intersect with DEGs to obtain co-expressed genes, validation datasets were employed to verify the results.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
Lower back pain caused by intervertebral disk degeneration (IDD) is a common problem among middle-aged and older adults. We aimed to identify novel diagnostic biomarkers of IDD and analyze the potential association between key genes and immune cell infiltration. We screened differentially expressed genes (DEGs) related to IDD and gene sets associated with mitochondrial energy metabolism using the Gene Expression Omnibus and GeneCards databases, respectively.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Clinical Oncology School of Fujian Medical University/Fujian Cancer Hospital, Fuzhou 350014, China.
To explore the clinical features, histopathological morphology, and differential diagnosis of lymphoepithelioma-like carcinoma with abnormal expression of follicular dendritic cell markers. From 2020 to 2021, 4 cases of lymphoepithelioma-like carcinoma with abnormal expression of follicular dendritic cell markers diagnosed in Fujian Cancer Hospital (2 cases) and the Second Affiliated Hospital of Fujian Medical University (2 cases) were collected. Different ancillary procedures such as HE, special stains, immunohistochemistry, and in situ hybridization techniques were used to assess the histopathological features and immunophenotypes.
View Article and Find Full Text PDFCancer Lett
September 2025
Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China. Electronic address:
Dendritic cells (DCs) are the most powerful antigen-presenting cells (APCs) within the tumour microenvironment (TME), where they orchestrate T cell-mediated anti-tumour immunity and can also be reprogrammed to promote the progression of tumours in the TME. Extracellular vesicles (EVs) are very small and they are secreted by cells and wrapped in lipid bilayers that shuttle bioactive cargoes, including proteins, nucleic acids, and metabolites, to recipient cells, thereby influencing the progression of diseases, including cancer. DC-derived EVs (DC-EVs) play pivotal roles in the TME by mediating crosstalk with other immune and stromal cells to modulate inflammatory responses, angiogenesis, cell death, and immune evasion, thereby regulating the development and progression of tumours.
View Article and Find Full Text PDF