Assessing receptivity in the endometrium: the need for a rapid, non-invasive test.

Reprod Biomed Online

Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia. Electronic address:

Published: November 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Successful implantation of an embryo into the uterus requires synchrony between the blastocyst and the endometrium. Endometrial preparedness, or receptivity, occurs only for a very short time during the mid-secretory phase of the menstrual cycle in fertile women. Failure to achieve receptivity results in infertility and is a rate-limiting step for IVF success. Frozen embryo transfer in non-stimulation cycles is already improving live birth rates. However, an important tool that is missing in the armoury of reproductive specialists is a means to rapidly assess endometrial receptivity, either during initial assessment or immediately prior to embryo transfer. The development of a wealth of omics technologies now opens the way for identifying potential receptivity markers, although validation of these is still a major issue. This review assesses the current state of the field and the requirements to proceed to a valid clinical test.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2013.05.014DOI Listing

Publication Analysis

Top Keywords

embryo transfer
8
assessing receptivity
4
receptivity endometrium
4
endometrium rapid
4
rapid non-invasive
4
non-invasive test
4
test successful
4
successful implantation
4
implantation embryo
4
embryo uterus
4

Similar Publications

Purpose: To assess the intra-individual variability of serum progesterone (P) levels on embryo transfer (ET) day, when the same dose of intramuscular progesterone (IM-P) was used in two consecutive hormone replacement therapy (HRT) frozen embryo transfer (FET) cycles.

Methods: A total of 75 patients undergoing two consecutive HRT-FET cycles in one year performed at Bahceci Ankara IVF Center between November 2019 and February 2022 were retrospectively analyzed. Serum P levels were measured at the 117th-119th hours of support by a single laboratory.

View Article and Find Full Text PDF

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Background: Vitrified embryos ≤300 μm give better pregnancy rates following warming and transfer than larger ones. Embryo recovery undertaken close to when the embryo enters the uterus (Day 6-6.5) helps in the recovery of embryos ≤300 μm.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF

Canine somatic cell nuclear transfer (SCNT) is a powerful technology that can be used to clone beloved companion dogs, produce valuable working dogs, rescue endangered canine breeds, and create genetically engineered dogs. Nevertheless, the application of this technology is hindered by the low developmental efficiency of canine SCNT embryos. It has been shown that in pig and horse cloning using mesenchymal stem cells (MSCs), compared with fibroblasts, as donor cells can enhance the developmental potential of SCNT embryos.

View Article and Find Full Text PDF