98%
921
2 minutes
20
Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824177 | PMC |
http://dx.doi.org/10.1038/jcbfm.2013.127 | DOI Listing |
Chem Sci
August 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan.
Residence time, which refers to the average duration a drug remains bound to its receptor, is a crucial parameter in determining its pharmacological effects. However, the mechanisms governing the residence time of G protein-coupled receptor (GPCR) ligands remain unclear. In this study, we observed NMR signals from the methyl groups of alanine and methionine located at the intersection of the binding cavity and extracellular loops of AAR under conditions where E165Q and T256A mutations led to reduced residence times.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Chemistry, Amity University Mumbai, Maharashtra, India.
This study investigates the potential protective effects of eugenol on cecal ligation puncture (CLP) induced sepsis rat model. CLP was used to induce sepsis in rats and then treated with eugenol at doses of 25 and 50 mg/kg, i.p.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Achucarro Basque Center for Neuroscience, Leioa, Spain.
Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).
View Article and Find Full Text PDFHeterozygous loss-of-function mutations are one established cause of isolated dystonia and hyposmia. Homozygous mutations have been reported in siblings with generalized dystonia and intellectual disability. encodes major [NM_001369387.
View Article and Find Full Text PDFNeurobiol Dis
September 2025
Inserm UMR-S 1270, Paris 75005, France; Sorbonne Université, Faculty of Sciences and Engineering, Paris 75005, France; Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris 75005, France; Sorbonne Université, Institut du Cerveau, Inserm, CNRS, AP-HP, Institut de Neurologie, Hôpital de la Salp
Isolated dystonia can be caused by loss-of-function mutations in the GNAL gene (DYT-GNAL/DYT25). This gene encodes the α subunit of the heterotrimeric G protein, which, with βγ subunits, mediates the stimulatory coupling of dopamine D1 and adenosine A2A receptors to adenylyl-cyclase. These receptors are expressed in distinct striatal projection neurons (SPNs) with complementary functions in motor behavior.
View Article and Find Full Text PDF