Ly9 (CD229) Cell-Surface Receptor is Crucial for the Development of Spontaneous Autoantibody Production to Nuclear Antigens.

Front Immunol

Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona , Spain.

Published: August 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Signaling Lymphocyte Activation Molecule Family (SLAMF) genes, which encode cell-surface receptors that modulate innate and adaptive immune responses, lay within a genomic region of human and mouse chromosome 1 that confers a predisposition for the development of systemic lupus erythematosus (SLE). Herein, we demonstrate that the SLAMF member Ly9 arises as a novel receptor contributing to the reinforcement of tolerance. Specifically, Ly9-deficient mice spontaneously developed features of systemic autoimmunity such as the production of anti-nuclear antibodies (ANA), -dsDNA, and -nucleosome autoantibodies, independently of genetic background [(B6.129) or (BALB/c.129)]. In aged (10- to 12-month-old) Ly9 (-/-) mice key cell subsets implicated in autoimmunity were expanded, e.g., T follicular helper (Tfh) as well as germinal center (GC) B cells. More importantly, in vitro functional experiments showed that Ly9 acts as an inhibitory receptor of IFN-γ producing CD4(+) T cells. Taken together, our findings reveal that the Ly9 receptor triggers cell intrinsic safeguarding mechanisms to prevent a breach of tolerance, emerging as a new non-redundant inhibitory cell-surface receptor capable of disabling autoantibody responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728625PMC
http://dx.doi.org/10.3389/fimmu.2013.00225DOI Listing

Publication Analysis

Top Keywords

cell-surface receptor
8
ly9
5
receptor
5
ly9 cd229
4
cd229 cell-surface
4
receptor crucial
4
crucial development
4
development spontaneous
4
spontaneous autoantibody
4
autoantibody production
4

Similar Publications

Muricholic acid mediates puberty initiation via the hypothalamic TGR5 signaling pathway.

Proc Natl Acad Sci U S A

September 2025

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.

The onset of puberty is increasingly observed at earlier ages in children, especially in girls with obesity, a trend that predisposes them to long-term metabolic and reproductive disorders in adulthood. Bile acids have emerged as pivotal signaling molecules in both metabolic and reproductive disorders, but remain unexplored in the early onset of puberty in children. Herein, we find elevated levels of muricholic acid (MCA) species in the serum of girls with central precocious puberty, which strongly correlate with indices of hypothalamic-pituitary-gonadal axis activation and can reach peak levels during puberty among healthy children.

View Article and Find Full Text PDF

Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.

View Article and Find Full Text PDF

Background: Maternal childhood maltreatment has been associated with higher risk of adverse neurodevelopment in offspring. Chronic systemic inflammation has been associated with childhood maltreatment and has been identified as a gestational risk factor for adverse neurodevelopment in offspring. Thus, inflammation may be a mechanism by which maternal exposure to maltreatment affects offspring neurodevelopment.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a broad spectrum of physical and cognitive impairments. Myeloid cells within the CNS, including microglia and border-associated macrophages, play a central role in the neuroinflammatory processes associated with MS. Activation of these cells contributes to the local inflammatory response and promotes the recruitment of additional immune cells into the CNS.

View Article and Find Full Text PDF

T-cell therapies have proven to be a promising treatment option for cancer patients in recent years, especially in the case of chimeric antigen receptor (CAR)-T cell therapy. However, the therapy is associated with insufficient activation of T cells or poor persistence in the patient's body, which leads to incomplete elimination of cancer cells, recurrence, and genotoxicity. By extracting the splice element of PD-1 pre-mRNA using biology based on CRISPR/dCas13 in this study, our ultimate goal is to overcome the above-mentioned challenges in the future.

View Article and Find Full Text PDF