Modulatory ATP binding to the E2 state of maize plasma membrane H+-ATPase indicated by the kinetics of vanadate inhibition.

FEBS J

Institute of Plant Nutrition, Justus Liebig University, Giessen, Germany; College of Environmental Science and Engineering, Yangzhou University, China.

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

P-type ATPases, as major consumers of cellular ATP in eukaryotic cells, are characterized by the formation of a phosphorylated enzyme intermediate (E2P), a process that is allosterically coupled to translocation of cations against an electrochemical gradient. The catalytic cycle comprises binding of Mg-ATP at the nucleotide-binding domain, phosphorylation of the E1 state (E1), conformational transition to the E2P state, and dephosphorylation through the actuator domain and re-establishment of the E1 state. Recently, it has been suggested that, for several P-type ATPases, Mg-ATP binds to the phosphorylated enzyme, thereby accelerating the transition to the E1 state, before then becoming the enzyme's catalytic substrate. Here, we provide evidence supporting this viewpoint. We employed kinetic models based on steady-state kinetics in the presence and absence of the reversible inhibitor orthovanadate. Vanadate is generally considered to be a conformational probe that specifically binds to the E2 state, arresting the enzyme in a state analogous to the E2P state. Hydrolytic H(+) -ATPase activities were measured in inside-out plasma membrane vesicles isolated from roots and shoots of maize plants. For root enzymes, kinetic models of vanadate inhibition that allow simultaneous binding of Mg-ATP and vanadate to the same enzyme state were most plausible. For shoot enzymes, application of the competitive inhibitor Mg-free ATP attenuated vanadate inhibition, which is consistent with a model in which either Mg-free ATP or Mg-ATP is bound to the enzyme when vanadate binds. Therefore, data from roots and shoots indicate that binding of ATP species before transition to the E1 state plays an important role in the catalytic cycle of plant plasma membrane H(+) -ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.12447DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
vanadate inhibition
12
state
10
p-type atpases
8
phosphorylated enzyme
8
catalytic cycle
8
binding mg-atp
8
e2p state
8
transition state
8
kinetic models
8

Similar Publications

Agonist-induced interaction of G protein-coupled receptors (GPCRs) with β-arrestins (βarrs) is a critical mechanism that regulates the spatiotemporal pattern of receptor localization and signaling. While the underlying mechanism governing GPCR-βarr interaction is primarily conserved and involves receptor activation and phosphorylation, there are several examples of receptor-specific fine-tuning of βarr-mediated functional outcomes. Considering the key contribution of conformational plasticity of βarrs in driving receptor-specific functional responses, it is important to develop novel sensors capable of reporting distinct βarr conformations in cellular context.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.

View Article and Find Full Text PDF

Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.

View Article and Find Full Text PDF

Purpose: Taenia pisiformis cysticerci have been reported in the female reproductive tract of rabbits, and this parasitosis is known to alter reproductive behavior and reduce embryo implantation; however, tissue-based studies relating the immune system to the implantation site during infection have not been previously addressed. Therefore, our research provides new information on the interaction between pregnancy and parasitic infection.

Methods: This study evaluated the recruitment of immune cells in uterine tissue during T.

View Article and Find Full Text PDF