98%
921
2 minutes
20
Hepatitis C virus (HCV) protein p7 plays an important role in the assembly and release of mature virus particles. This small 63-residue membrane protein has been shown to induce channel activity, which may contribute to its functions. p7 is highly conserved throughout the entire range of HCV genotypes, which contributes to making p7 a potential target for antiviral drugs. The secondary structure of p7 from the J4 genotype and the tilt angles of the helices within bilayers have been previously characterized by nuclear magnetic resonance (NMR). Here we describe the three-dimensional structure of p7 in short chain phospholipid (1,2-dihexanoyl-sn-glycero-3-phosphocholine) micelles, which provide a reasonably effective membrane-mimicking environment that is compatible with solution NMR experiments. Using a combination of chemical shifts, residual dipolar couplings, and PREs, we determined the structure of p7 using an implicit membrane potential combining both CS-Rosetta decoys and Xplor-NIH refinement. The final set of structures has a backbone root-mean-square deviation of 2.18 Å. Molecular dynamics simulations in NAMD indicate that several side chain interactions might be taking place and that these could affect the dynamics of the protein. In addition to probing the dynamics of p7, we evaluated several drug-protein and protein-protein interactions. Established channel-blocking compounds such as amantadine, hexamethylene amiloride, and long alkyl chain iminosugar derivatives inhibit the ion channel activity of p7. It has also been shown that the protein interacts with HCV nonstructural protein 2 at the endoplasmic reticulum and that this interaction may be important for the infectivity of the virus. Changes in the chemical shift frequencies of solution NMR spectra identify the residues taking part in these interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855088 | PMC |
http://dx.doi.org/10.1021/bi4006623 | DOI Listing |
Regen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFJ Coll Sci Teach
March 2025
RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, United States.
Structure-function relationships are a core concept in many STEM disciplines. Most biology curricula introduce students to macromolecules, their building blocks, and other small molecules that play key roles in biological processes. However, the shapes, interactions, and functions of these molecules are often discussed using schematic diagrams, ignoring the vast amounts of three-dimensional structural and bioinformatics data freely available from public data resources.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.
View Article and Find Full Text PDFBMC Ecol Evol
September 2025
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2025
Introduction: There has been long-standing interest in the physiological and psychological effects of mild hypoxia on aircrew, but to date there is no psychometrically valid self-report measure of subjective symptoms.
Methods: To address this gap, we developed a self-report scale along three dimensions of impairment: cognitive, sensory and affective. We administered this scale to active and retired aircrew (N = 354) with on average 25.