98%
921
2 minutes
20
We characterized cromolyn sodium (CS) hydrates and evaluated their molecular states in low-dose formulations using Na-multiquantum magic-angle spinning (MQMAS) nuclear magnetic resonance (NMR) analysis. Two CS hydrates, low-water-content hydrated form and high-water-content hydrated form containing 2-3 and 5-6 hydrates, respectively, were prepared by humidification. Single-crystal X-ray diffraction and powder X-ray diffraction analysis revealed that these CS hydrates contained sodium channel structures and that water molecules were adsorbed on the sodium nucleus. (13) C-cross-polarization/MAS NMR spectra of these hydrates revealed similar results, confirming that the water molecules were adsorbed not on the cromolyn skeletons but mainly on the sodium nucleus. In contrast, (23) Na-MQMAS NMR analysis allowed us to clearly distinguish these hydrates without discernible effects from quadrupolar interaction. Thus, MQMAS NMR analysis is a valuable tool for evaluating salt drugs and their formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23655 | DOI Listing |
Brain Behav
September 2025
Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
Background: The susceptibility values of the basal ganglia reflect the health status of these nuclei. We aimed to explore the associations between various demographic characteristics, lifestyle factors, and biological factors that have the potential to contribute to magnetic susceptibility and investigate the comprehensive impact of these multiple factors on basal ganglia susceptibility values.
Methods: We included 25,980 participants from the UK Biobank.
Brain Behav
September 2025
The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
Background: Diverse correlations between structural brain abnormalities and the clinical feature of bulimia nervosa (BN) have been identified in previous observational studies.
Objective: To explore the bidirectional causality between BN and brain structural magnetic resonance imaging (MRI) phenotypes.
Methods: Genome-wide association studies (GWAS) of 2441 participants identified genetic variants associated with disordered eating and predicted BN, whereas UK Biobank 3D-T1 MRI data were used to analyze brain structural phenotypes.
Brain Behav
September 2025
Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan.
Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.
Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.
J Am Chem Soc
September 2025
Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
Non-hydrogenative para-hydrogen-induced polarization (nhPHIP) has proven a powerful tool for the enhanced NMR detection of several classes of metabolites in complex mixtures. Particularly, compounds carrying an α-amino acid motif have been previously detected and quantified in biological samples and natural extracts at submicromolar concentrations using 2D nhPHIP NMR spectroscopy. This technique is here applied for the first time in a semi-targeted metabolomics NMR study on urine from patients suffering from Pyridoxine-Dependent Epilepsy (PDE), currently diagnosed by the presence of dilute unique biomarkers.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Radiology, Guizhou Provincial People's Hospital, No. 83 East Zhongshan Road, Guiyang, 550002, Guizhou, China.
Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.
Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).