Complex biotic interactions drive long-term vegetation dynamics in a subarctic ecosystem.

Philos Trans R Soc Lond B Biol Sci

Department of Ecology and Environmental Science, Umeå University, 901 87 Umeå, Sweden.

Published: August 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predicting impacts of global warming requires understanding of the extent to which plant biomass and production are controlled by bottom-up and top-down drivers. By annually monitoring community composition in grazed control plots and herbivore-free exclosures at an Arctic location for 15 years, we detected multiple biotic interactions. Regular rodent cycles acted as pulses driving synchronous fluctuations in the biomass of field-layer vegetation; reindeer influenced the biomass of taller shrubs, and the abundance of plant pathogenic fungi increased when densities of their host plants increased in exclosures. Two outbreaks of geometrid moths occurred during the study period, with contrasting effects on the field layer: one in 2004 had marginal effects, while one in 2012 severely reduced biomass in the control plots and eliminated biomass that had accumulated over 15 years in the exclosures. The latter was followed by a dramatic decline of the dominant understory dwarf-shrub Empetrum hermaphroditum, driven by an interaction between moth herbivory on top buds and leaves, and increased disease severity of a pathogenic fungus. We show that the climate has important direct and indirect effects on all these biotic interactions. We conclude that long time series are essential to identify key biotic interactions in ecosystems, since their importance will be influenced by climatic conditions, and that manipulative treatments are needed in order to obtain the mechanistic understanding needed for robust predictions of future ecosystem changes and their feedback effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720058PMC
http://dx.doi.org/10.1098/rstb.2012.0486DOI Listing

Publication Analysis

Top Keywords

biotic interactions
16
control plots
8
biomass
5
complex biotic
4
interactions
4
interactions drive
4
drive long-term
4
long-term vegetation
4
vegetation dynamics
4
dynamics subarctic
4

Similar Publications

Elevated ozone promotes the dominance of invasive plant species in low-diversity native plant communities.

Am J Bot

September 2025

Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China.

Premise: The diversity-invasibility hypothesis suggests that native plant communities with high species diversity are more resistant to invasions by exotic species compared to those with fewer species. This resistance stems from more complete resource use and stronger biotic interactions in diverse communities, which limit opportunities for invaders to establish. However, this resistance could potentially be weakened by environmental stressors, including elevated tropospheric ozone.

View Article and Find Full Text PDF

There is a growing body of evidence that the interaction between various microbial organisms and the human host can affect various physical and even mental health conditions. Bidirectional communication occurs between the brain and the gut microbiome, referred to as the brain-gut-microbiome axis. During aging, changes occur to the gut microbiome due to various events and factors such as the mode of delivery at birth, exposure to medications (e.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Chitinases, enzymes responsible for hydrolyzing chitin, a significant component of fungal cell walls, play a crucial role in plant defense mechanisms, growth, symbiotic relationships, and stress resistance. In this study, we identified 27 chitinase genes in chickpeas (CaChi) and classified them into five classes based on phylogenetic analysis. Overall, chitinase genes are clustered on eight chromosomes.

View Article and Find Full Text PDF

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF