Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, density functional theory (DFT) was employed to investigate the reaction pathways of β-D-glucopyranose for better understanding the pyrolysis mechanism of cellulose in hydrogen plasma. Many possible reactions were considered, and the reaction enthalpies and activation energies of these reactions were calculated using density functional theory (DFT) with a Gaussian method of B3LYP and basic set of 6-31G(d,p). A most possible reaction pathway was brought up. According to this reaction pathway, the main products of cellulose pyrolysis in hydrogen plasma would be syngas, and few light hydrocarbons. CO mainly comes from the decomposition of aldehyde group, while H2 mainly comes from dehydrogenation processes. Active H in plasma are found to play a very important role in many reactions, and they can remarkably lower the energies needed for reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.06.019DOI Listing

Publication Analysis

Top Keywords

hydrogen plasma
12
density functional
12
functional theory
12
reaction pathways
8
pathways β-d-glucopyranose
8
theory dft
8
reaction pathway
8
reaction
5
β-d-glucopyranose pyrolysis
4
pyrolysis syngas
4

Similar Publications

Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.

View Article and Find Full Text PDF

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF

Role of hydrogen sulfide in catalyzing the formation of NO-ferroheme.

Nitric Oxide

September 2025

Department of Physics, Wake Forest University, Winston-Salem, NC, 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC, 27109, USA. Electronic address:

We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.

View Article and Find Full Text PDF

In ammonia synthesis, a new reaction system that does not use hydrogen (H) as a raw material, such as the plasma/liquid (P/L) reaction, contributes to creating a sustainable chemical industry. The P/L reaction is intended to abstract hydrogen atoms from water molecules to synthesize ammonia under ambient conditions without any catalysts but using electrically activated nitrogen species in the plasma. Therefore, the energy transfer process leading to nitrogen activation is key to the P/L reaction.

View Article and Find Full Text PDF

Reactive Molecular Dynamics Study on the Growth Mechanism of Nitrogen-Doped Graphene in an Arc Plasma Environment.

J Mol Model

September 2025

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.

Context: This study systematically investigates the growth mechanism of nitrogen-doped graphene in a plasma environment, with a particular focus on the effects of temperature and hydrogen radicals on its structural evolution. The results reveal that, at 3000 K, the formation of nitrogen-doped graphene proceeds through three stages: carbon chain elongation, cyclization, and subsequent condensation into planar structures. During this process, nitrogen atoms are gradually incorporated into the carbon network, forming various doping configurations such as pyridinic-N, pyrrolic-N, and graphitic-N.

View Article and Find Full Text PDF