98%
921
2 minutes
20
Type-6-secretion systems of Gram-negative bacteria are widely distributed needle-like multi-protein complexes that are involved in microbial defense mechanisms. During bacterial competition these injection needles dispense effector proteins into the periplasm of competing bacteria where they induce degradation of the peptidoglycan scaffold and lead to cell lysis. Donor cells co-produce immunity proteins and shuttle them into their own periplasm to prevent accidental toxication by siblings. Recently, a plethora of previously unidentified hydrolases have been suggested to be peptidoglycan degrading amidases. These hydrolases are part of effector/immunity pairs that have been associated with bacterial warfare by type-6-secretion systems. The Tae4 and Tai4 operon encoded by Salmonella typhimurium is one of these newly discovered effector/immunity pairs. The Tae4 effector proteins induce cell lysis by cleaving the γ-D-glutamyl-L-meso-diaminopimelic acid amide bond of acceptor stem muropeptides of the Gram-negative peptidoglycan. Although homologues of the Tae4/Tai4 system have been identified in various different pathogens, little is known about the functional mechanism of effector protein activity and their inhibition by the cognate immunity proteins. Here, we present the high-resolution crystal structure of the effector Tae4 of S. typhimurium in complex with its immunity protein Tai4. We show that Tae4 contains a classical NlpC/P60-peptidase core which is common to other effector proteins of the type-6-secretion system. However, Tae4 has unique structural features that are exclusively conserved within the family of Tae4 effectors and which are important for the substrate specificity. Most importantly, we show that although the overall structure of Tai4 is different to previously described immunity proteins, the essential mode of enzyme inhibition is conserved. Additionally, we provide evidence that inhibition in the Tae4/Tai4 heterotetramer relies on a central Tai4 dimer in order to acquire functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695027 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0067362 | PLOS |
Handb Exp Pharmacol
September 2025
National Institute of Biological Sciences, Beijing, China.
G protein-coupled receptors (GPCRs) engage multiple transducers to regulate distinct physiological processes. These transducers include various G proteins subtypes, GPCR kinases (GRKs), and β-arrestins. In addition to promoting receptor desensitization, β-arrestins serve as scaffolds for signaling via non-G protein pathways.
View Article and Find Full Text PDFACS Synth Biol
September 2025
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russian Federation.
African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.
View Article and Find Full Text PDFPLoS One
September 2025
Los Angeles General Medical Center, Los Angeles, California, United States of America.
Assessing the phagocytosis of microbes by macrophages is an important component of studies of novel immunotherapeutics, antimicrobial drugs, immune effectors, or any immunology related research. Here we define two protocols for measuring in vitro phagocytosis by RAW 246.7 cells - a photographic phagocytosis assay that allows optical measurement of bacterial cells inside of the RAW 246.
View Article and Find Full Text PDFArch Pharm Res
September 2025
College of Pharmacy and Medical Research Center, Chungbuk National University, 194-21, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
Atopic dermatitis (AD) is an inflammatory skin disease that produces a variety of inflammatory cytokines and chemokines. Chitinase-3-like protein 1 (CHI3L1, YKL-40) significantly contributes to AD-associated inflammatory response and is highly expressed in patients with AD. Therefore, this study elucidated the effects and potential mechanisms of human YKL-40 antibody on AD-affected skin.
View Article and Find Full Text PDFElife
September 2025
Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, United States.
Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.
View Article and Find Full Text PDF