98%
921
2 minutes
20
This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201301033 | DOI Listing |
Technol Cancer Res Treat
September 2024
Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
Breast cancer is the most common malignancy in women worldwide, and major challenges in its treatment include drug resistance and metastasis. Three-dimensional cell culture systems have received widespread attention in drug discovery studies but existing models have limitations, that warrant the development of a simple and repeatable three-dimensional culture model for high-throughput screening. In this study, we designed a simple, reproducible, and highly efficient microencapsulated device to co-culture MCF-7 cells and HUVECs in microcapsules to establish an vascularized micro-tumor model for chemotherapeutic drug screening.
View Article and Find Full Text PDFPharmaceutics
November 2021
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico.
Asparaginase (ASNase) is a widely applied chemotherapeutic drug that is used to treat Acute Lymphoblastic Leukemia (ALL); however, immune responses and silent inactivation of the drug often limit its bioavailability. Many strategies have been proposed to overcome these drawbacks, including the development of improved formulations (biobetters), but only two of them are currently on the market. Nano- and micro-encapsulation are some of the most promising and novel approaches to enhance in vivo performance of ASNase, preventing the direct contact of the enzyme with the environment, protecting it from protease degradation, increasing the enzymes catalytic half-life, and in some cases, reducing immunogenicity.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2020
Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
Localized drug delivery to lung cancer can overcome the limitations of systemic nanocarriers including low drug amounts reaching lung tissues and severe off-target toxicity. The current work presented novel inhalable nanocomposites as noninvasive platforms for lung cancer therapy. Nanoparticulate liquid crystals (LCNPs) based on monoolein were developed for synergistic co-encapsulation of the cytotoxic chemotherapeutic drug, pemetrexed, and the phytoherbal drug, resveratrol (PEM-RES-LCNPs).
View Article and Find Full Text PDFPharmaceutics
September 2019
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
In this study, a new kind of folic acid (FA)-conjugated and chitosan (CS)-coated poloxamer 407 (P407)/poly(lactic--glycolic acid) (PLGA) nanoparticles (NPs), FCPP NPs, were prepared, and further micro-encapsulated by carboxymethyl β-glucan microcapsules (MCs) to produce a multifunctional system of NPs embedded in MCs (NEMs) for potential lung tumor-targeted delivery of gefitinib. The prepared gefitinib-loaded FCPP (GFB/FCPP) NPs showed a hydrodynamic diameter of 255.4 ± 14.
View Article and Find Full Text PDFBiomaterials
May 2018
iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal. Electronic address:
The tumour microenvironment (TME) shapes disease progression and influences therapeutic response. Most aggressive solid tumours have high levels of myeloid cell infiltration, namely tumour associated macrophages (TAM). Recapitulation of the interaction between the different cellular players of the TME, along with the extracellular matrix (ECM), is critical for understanding the mechanisms underlying disease progression.
View Article and Find Full Text PDF