98%
921
2 minutes
20
Interactions between glioma cells and their local environment are critical determinants of brain tumor growth, infiltration and neovascularisation. Communication with host cells and stroma via microvesicles represents one pathway by which tumors can modify their surroundings to achieve a tumor-permissive environment. Here we have taken an unbiased approach to identifying RNAs in glioma-derived microvesicles, and explored their potential to regulate gene expression in recipient cells. We find that glioma microvesicles are predominantly of exosomal origin and contain complex populations of coding and noncoding RNAs in proportions that are distinct from those in the cells from which they are derived. Microvesicles show a relative depletion in microRNA compared with their cells of origin, and are enriched in unusual or novel noncoding RNAs, most of which have no known function. Short-term exposure of brain microvascular endothelial cells to glioma microvesicles results in many gene expression changes in the endothelial cells, most of which cannot be explained by direct delivery of transcripts. Our data suggest that the scope of potential actions of tumor-derived microvesicles is much broader and more complex than previously supposed, and highlight a number of new classes of small RNA that remain to be characterized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3817155 | PMC |
http://dx.doi.org/10.4161/rna.25281 | DOI Listing |
Neuro Oncol
June 2025
Department of Oncology, McGill University, Montreal, QC, Canada.
Background: Glioblastoma is an aggressive brain cancer with a 5-year survival rate of 5-10%. Current therapeutic options are limited, due in part to drug exclusion by the blood-brain barrier, restricting access of targeted drugs to the tumor. The receptor for the type 1 insulin-like growth factor (IGF-1R) was identified as a therapeutic target in glioblastoma.
View Article and Find Full Text PDFApoptosis
February 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China.
Hypoxia can weaken the efficacy of radiotherapy and decrease tumor immunogenicity leading to immune escape. Thus, a thorough understanding of the key signaling pathways regulated by hypoxia is vitally important to enhance the radiosensitivity and improve immunosuppressive microenvironment of glioma. In this study, we verified the crucial role of hypoxia-inducible gene 2 (HIG-2) in lipid droplet (LD) accumulation and demonstrated that HIG-2 binding to frizzled class receptor 10 (FZD10) activated Wnt/β-catenin signaling pathway and increased its downstream insulin-like growth factor binding protein 2 (IGFBP2) level in microparticles (MPs) derived from glioma stem cells (GSCs), leading to decreased radiosensitivity and immunogenicity of MPs-receiving cells via the cross-talk between GSCs and non-stem glioma cells (GCs).
View Article and Find Full Text PDFCells
March 2024
Department of Innovative Technologies in Medicine and Dentistry, 'G. d'Annunzio' University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy.
Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness.
View Article and Find Full Text PDFBMC Cancer
March 2024
Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology.
View Article and Find Full Text PDFPathol Oncol Res
February 2024
Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
Glioblastoma is the most aggressive brain tumor with extremely poor prognosis in adults. Routine treatments include surgery, chemotherapy, and radiotherapy; however, these may lead to rapid relapse and development of therapy-resistant tumor. Glioblastoma cells are known to communicate with macrophages, microglia, endothelial cells, astrocytes, and immune cells in the tumor microenvironment (TME) to promote tumor preservation.
View Article and Find Full Text PDF