Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Driving safety has become a global topic of discussion with the recent development of the Smart Car concept. Many of the current car safety monitoring systems are based on image discrimination techniques, such as sensing the vehicle drifting from the main road, or changes in the driver's facial expressions. However, these techniques are either too simplistic or have a low success rate as image processing is easily affected by external factors, such as weather and illumination. We developed a drowsiness detection mechanism based on an electroencephalogram (EEG) reading collected from the driver with an off-the-shelf mobile sensor. This sensor employs wireless transmission technology and is suitable for wear by the driver of a vehicle. The following classification techniques were incorporated: Artificial Neural Networks, Support Vector Machine, and k Nearest Neighbor. These classifiers were integrated with integration functions after a genetic algorithm was first used to adjust the weighting for each classifier in the integration function. In addition, since past studies have shown effects of music on a person's state-of-mind, we propose a personalized music recommendation mechanism as a part of our system. Through the in-car stereo system, this music recommendation mechanism can help prevent a driver from becoming drowsy due to monotonous road conditions. Experimental results demonstrate the effectiveness of our proposed drowsiness detection method to determine a driver's state of mind, and the music recommendation system is therefore able to reduce drowsiness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758591 | PMC |
http://dx.doi.org/10.3390/s130708199 | DOI Listing |