Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While various factors have been reported to direct stem cell differentiation lineage, little is known about how nature orchestrates the mesenchymal stem cell (MSC) differentiation and bone morphogenesis during skeleton development and bone regeneration. The present study reports that the matrix has a critical regulating effect on MSC differentiation and the subsequent bone formation modes. A simply combined hydroxyapatite (HA)-collagen matrix stimulates the MSC differentiation into the osteoblastic lineage and leads to a straightforward intramembranous bone formation mode, in contrast to the chondrocytic differentiation and endochondral mode observed on HA-synthetic hydrogel matrix. The accelerated MSC condensation and robust MSC-matrix and MSC-MSC interactions on collagen-based matrix might be the critical factors contributing to such events, likely through the orchestrated signal cascades and cellular events modulated by the extracellular matrix. The results demonstrate that matrix plays critical role in modulating the stem cell differentiation lineage and bone formation mode, which has been largely overlooked.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.05.056DOI Listing

Publication Analysis

Top Keywords

bone formation
16
stem cell
12
msc differentiation
12
chondrocytic differentiation
8
extracellular matrix
8
subsequent bone
8
formation modes
8
cell differentiation
8
differentiation lineage
8
matrix critical
8

Similar Publications

Background: Genetic modifiers are believed to play an important role in the onset and severity of polycystic kidney disease (PKD), but identifying these modifiers has been challenging due to the lack of effective methodologies.

Methods: We generated zebrafish mutants of IFT140, a skeletal ciliopathy gene and newly identified autosomal dominant PKD (ADPKD) gene, to examine skeletal development and kidney cyst formation in larval and juvenile mutants. Additionally, we utilized ift140 crispants, generated through efficient microhomology-mediated end joining (MMEJ)-based genome editing, to compare phenotypes with mutants and conduct a pilot genetic modifier screen.

View Article and Find Full Text PDF

Purpose: This systematic review provides a critical evaluation, synthesis of the existing literature on isotretinoin's effects on craniomaxillofacial bone.

Methods: Following the PRISMA guidelines and registered in PROSPERO, the review was conducted in August 2024 across various databases. Eligible in vivo studies were analysed for their assessment of isotretinoin's effects on craniomaxillofacial bone.

View Article and Find Full Text PDF

Intermittent PTH treatment has been used as both an osteoanabolic treatment in osteoporosis and a hormone replacement in hypoparathyroidism for many years. This scoping review compiles and reinterprets studies using histomorphometry supported by bone turnover markers to investigate the elusive cellular effect of intermittent PTH treatment locally within the bone, while illuminating knowledge gaps. Intermittent PTH increases both osteoclast and osteoblast activity within the first 6 months of treatment.

View Article and Find Full Text PDF

Mitoribosome-Targeting Antibiotics Suppress Osteoclastogenesis and Periodontitis-Induced Bone Loss by Blocking Mitochondrial Protein Synthesis.

FASEB J

September 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials

The onset and progression of periodontitis are closely related to metabolic reprogramming in the periodontal microenvironment, with osteoclasts playing a critical role in tissue destruction. Single-cell RNA sequencing (scRNA-seq) of periodontal tissues from healthy individuals and patients with severe chronic periodontitis revealed a significant increase in the expression of mitochondrial-related genes during osteoclast differentiation, suggesting the critical role of mitochondrial function in this process. This study investigates the potential of the novel mitoribosome-targeting antibiotic radezolid in inhibiting osteoclast differentiation.

View Article and Find Full Text PDF

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF