Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study examined the bindings of calmodulin (CaM) and its mutants with the C- and N-terminal tails of the voltage-gated Ca(2+) channel CaV1.2 at different CaM and Ca(2+) concentrations ([Ca(2+)]) by using the pull-down assay method to obtain basic information on the binding mode, including its concentration- and Ca(2+)-dependencies. Our data show that more than one CaM molecule could bind to the CaV1.2 C-terminal tail at high [Ca(2+)]. Additionally, the C-lobe of CaM is highly critical in sensing the change of [Ca(2+)] in its binding to the C-terminal tail of CaV1.2, and the binding between CaM and the N-terminal tail of CaV1.2 requires high [Ca(2+)]. Our data provide new details on the interactions between CaM and the CaV1.2 channel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717684PMC
http://dx.doi.org/10.1007/s12576-013-0270-yDOI Listing

Publication Analysis

Top Keywords

n-terminal tails
8
cav12 channel
8
c-terminal tail
8
high [ca2+]
8
tail cav12
8
cav12
6
cam
6
lobe-related concentration-
4
concentration- ca2+-dependent
4
ca2+-dependent interactions
4

Similar Publications

Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the Gammaherpesvirinae subfamily. During the lytic phase of herpesviruses, viral capsids form in the host cell nucleus, and the replicated viral genome is packaged into these capsids. The herpesviral genome is replicated as a precursor head-to-tail concatemer consisting of tandemly repeated genomic units, each flanked by terminal repeats (TRs).

View Article and Find Full Text PDF

Desmosomes (DSMs) are intercellular junctions essential for providing mechanical resilience to tissues, particularly the epidermis. Desmoplakin (DP) is a key DSM protein which anchors plaque proteins to keratins, thereby ensuring tissue integrity under mechanical stress. Clinically, DP mutations impair keratinocyte adhesion and structural integrity, leading to skin fragility disorders.

View Article and Find Full Text PDF

Motor-driven transport on microtubules is critical for distributing organelles throughout the cell. Most commonly, organelle movement is mediated by cargo adaptors, proteins on the surface of an organelle that directly recruit microtubule-based motors. An alternative mechanism called hitchhiking was recently discovered: some organelles move, not by recruiting the motors directly, but instead by using membrane contact sites to attach to motor-driven vesicles and hitchhike along microtubules.

View Article and Find Full Text PDF

Motor-driven transport on microtubules is critical for distributing organelles throughout the cell. Most commonly, organelle movement is mediated by cargo adaptors, proteins on the surface of an organelle that directly recruit microtubule-based motors. An alternative mechanism called hitchhiking was recently discovered: some organelles move, not by recruiting the motors directly, but instead by using membrane contact sites to attach to motor-driven vesicles and hitchhike along microtubules.

View Article and Find Full Text PDF

Histone H3 N-Terminal Tail Residues Important for Meiosis in .

Biomolecules

August 2025

Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA.

Histone tail phosphorylation has diverse effects on a myriad of cellular processes, including cell division, and is highly conserved throughout eukaryotes. Histone H3 phosphorylation at threonine 3 (H3T3) during mitosis occurs at the inner centromeres and is required for proper biorientation of chromosomes on the mitotic spindle. While H3T3 is also phosphorylated during meiosis, a possible role for this modification has not been tested.

View Article and Find Full Text PDF