Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle-polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0034-4885/76/6/066501DOI Listing

Publication Analysis

Top Keywords

assembly nanoscale
8
bottom-up self-assembly
8
functional materials
8
self-assembly
5
nanomaterial processing
4
processing self-assembly-bottom-up
4
self-assembly-bottom-up chemical
4
chemical biological
4
biological approaches
4
approaches nanotechnology
4

Similar Publications

Parylene-coated platinum nanowire electrodes for biomolecular sensing applications.

Beilstein J Nanotechnol

August 2025

Department of Physics & Engineering Physics, Morgan State University, Baltimore, MD 21251, USA.

Nanoscale biosensors have gained attention in recent years due to their unique characteristics and size. Manufacturing steps, cost, and other shortcomings limit the widespread use and commercialization of nanoscale electrodes. In this work, a nano-size electrode fabricated by directed electrochemical nanowire assembly and parylene-C insulation is introduced.

View Article and Find Full Text PDF

Plasmene nanosheets assembled from "plasmonic molecules".

Nanoscale Horiz

September 2025

School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia.

Entropy-driven drying-mediated self-assembly of plasmonic nanocrystals (termed "plasmonic atoms") has emerged as a general strategy for fabricating plasmene nanosheets from a wide range of monodisperse nanocrystals. However, extending this approach to binary systems remains challenging due to the complex nanoscale interactions between dissimilar nanocrystal shapes. Here, we introduce a combined enthalpy- and entropy-driven strategy to achieve an orderly mixed two-dimensional (2D) binary nanoassemblies from complementary reacting polymer-ligated nanocrystals.

View Article and Find Full Text PDF

Patchy nanoparticles (NPs) enable directional interactions and dynamic structural transformations, yet controlling polymeric patch formation with high spatial precision remains a significant challenge. Here, a thermally driven approach is presented to forming polystyrene (PS) patches on low-curvature facets of anisotropic gold nanocubes (NCs) using a single polymer component. Heating in DMF above 90 °C triggers selective desorption of PS chains from high-curvature edges and vertices via Au─S bond dissociation, followed by migration and deposition into rounded patches on flat surfaces.

View Article and Find Full Text PDF

Designing heterostructure-based nanocomposites has gained considerable interest in solving energy scarcity and environmental contamination issues. Herein, a heterojunction assembly of ternary SnS/MoS/g-CN nanocomposites with varying Sn and Mo weight ratios was synthesized through a single-step hydrothermal method. At an optimized ratio of tin to molybdenum (1 : 2), denoted as SM-3, promising electrochemical and photocatalytic performances were observed compared to bare SnS/g-CN and MoS/g-CN.

View Article and Find Full Text PDF

Polyoxometalates (POMs) are nanoscale, structurally versatile metal-oxo clusters with emerging applications in sustainability, energy, nanoelectronics, and life science technologies. Owing to their structural complexity, some all-inorganic POMs are often perceived as serendipitous outcomes from self-assembly processes, which poses challenges for scalable rational design. From this perspective, we therefore examine how the development of POM informatics and, more generally, data-driven POM exploration can pave the way for the molecular engineering of new POM-based materials targeting customized applications.

View Article and Find Full Text PDF