Emodin prevents ethanol-induced developmental anomalies in cultured mouse fetus through multiple activities.

Birth Defects Res B Dev Reprod Toxicol

College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, Korea.

Published: June 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Maternal alcohol ingestion on pregnant period causes fetal alcohol syndrome including psychological and behavioral problems, and developmental abnormality. In this study, we investigated the effect of emodin, an active anthraquinone component found in the roots and bark of the genus Rhamnus (Buckthorn), on ethanol-induced teratogenesis during embryonic organogenesis.

Methods: We cultured mouse embryos on embryonic day 8.5 for 2 days with ethanol (5 μl/3 ml) and/or emodin (1×10(-5) and 1×10(-4) μg/ml) using a whole embryo culture system and then investigated the developmental evaluation, superoxide dismutase (SOD) activity, and expression patterns of cytoplasmic SOD (SOD1), mitochondrial SOD (SOD2), cytosolic glutathione peroxidase (cGPx), tumor necrosis factor-α (TNF-α), caspase 3, and hypoxia inducible factor 1α (HIF-1α).

Results: Morphological parameters, including growth in yolk sac and fetal head, body length, and development of the central nervous system, circulation system, sensory organs, skeletal system, and limbs in embryos exposed to ethanol were significantly decreased compared to those of the normal control group, but co-treatment with emodin (1 × 10(-5) and 1 × 10(-4) μg/ml) significantly improved these parameters. Furthermore, the reduced levels of SOD activity, and SOD1, SOD2, cGPx, and HIF-1α and the increased gene levels of TNF-α and caspase-3 due to ethanol exposure were significantly restored by cotreatment with emodin. Birth Defects Res (Part B) 98:268-275, 2013. © 2013 Wiley Periodicals, Inc.

Conclusions: This study revealed that cotreatment with emodin significantly prevented teratogenesis induced by ethanol, not only by modulating hypoxia and antioxidant enzymes, but also by attenuating the enhanced levels of TNF-α and caspase 3 in cultured embryos. Therefore, emodin may be an effective preventive agent for ethanol-induced teratogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bdrb.21061DOI Listing

Publication Analysis

Top Keywords

cultured mouse
8
ethanol-induced teratogenesis
8
sod activity
8
tnf-α caspase
8
levels tnf-α
8
cotreatment emodin
8
emodin
7
emodin prevents
4
prevents ethanol-induced
4
ethanol-induced developmental
4

Similar Publications

Structure-Activity Relationships of 3-Hydroxypropanamidines (HPAs) with Potent In Vivo Antimalarial Activity.

J Med Chem

September 2025

Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.

New treatment strategies are required to combat the spread of drug-resistant malaria. The synthesis and preclinical evaluation of novel 3-hydroxy-propanamidines (HPAs), with modifications of the phenanthrene and the 4-fluorobenzamidine moieties, has yielded several analogs exhibiting excellent in vitro growth inhibition of drug-sensitive or resistant fresh clinical isolates and culture-adapted strains. No cytotoxicity in the human HepG2 cell line was observed, demonstrating notable parasite selectivity.

View Article and Find Full Text PDF

Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.

View Article and Find Full Text PDF

Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.

View Article and Find Full Text PDF

infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. Clumping factor A (ClfA) displayed on the bacterial surface plays a key role in promoting replication during invasive disease. Decades of research have pointed to a wide array of ligands engaged by ClfA.

View Article and Find Full Text PDF

Vertebrate animals and many small DNA and single-stranded RNA viruses that infect vertebrates have evolved to suppress genomic CpG dinucleotides. All organisms and most viruses additionally suppress UpA dinucleotides in protein-coding RNA. Synonymously recoding viral genomes to introduce CpG or UpA dinucleotides has emerged as an approach for viral attenuation and vaccine development.

View Article and Find Full Text PDF