A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization and modeling of transcriptional cross-regulation in Acinetobacter baylyi ADP1. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synthetic biology involves reprogramming and engineering of regulatory genes in innovative ways for the implementation of novel tasks. Transcriptional gene regulation systems induced by small molecules in prokaryotes provide a rich source for logic gates. Cross-regulation, whereby a promoter is activated by different molecules or different promoters are activated by one molecule, can be used to design an OR-gate and achieve cross-talk between gene networks in cells. Acinetobacter baylyi ADP1 is naturally transformable, readily editing its chromosomal DNA, which makes it a convenient chassis for synthetic biology. The catabolic genes for salicylate, benzoate, and catechol metabolism are located within a supraoperonic cluster (-sal-are-ben-cat-) in the chromosome of A. baylyi ADP1, which are separately regulated by LysR-type transcriptional regulators (LTTRs). ADP1-based biosensors were constructed in which salA, benA, and catB were fused with a reporter gene cassette luxCDABE under the separate control of SalR, BenM, and CatM regulators. Salicylate, benzoate, catechol, and associated metabolites were found to mediate cross-regulation among sal, ben, and cat operons. A new mathematical model was developed by considering regulator-inducer binding and promoter activation as two separate steps. This model fits the experimental data well and is shown to predict cross-regulation performance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/sb3000244DOI Listing

Publication Analysis

Top Keywords

baylyi adp1
12
acinetobacter baylyi
8
synthetic biology
8
salicylate benzoate
8
benzoate catechol
8
characterization modeling
4
modeling transcriptional
4
cross-regulation
4
transcriptional cross-regulation
4
cross-regulation acinetobacter
4

Similar Publications