Comparison of the prevalence of shiga toxin-producing Escherichia coli strains O157 and O26 between beef and dairy cattle in Japan.

J Vet Med Sci

Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan.

Published: September 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the aim of comparing the prevalence of Shiga toxin-producing Escherichia coli (STEC) O157 and O26 between beef and dairy cattle, we collected rectal content samples from 250 beef cattle on 25 beef farms and 250 dairy cows on 25 dairy farms from July through September 2011. STEC O157 was isolated from 16 beef cattle on 7 beef farms, while no STEC O157 was isolated from any dairy farms. This result suggests that the prevalence of STEC O157 is higher in beef cattle than in dairy cattle. STEC O26 was isolated from 1 animal each from beef and dairy cattle herds, and therefore, it was not possible to compare statistically the prevalence of STEC O26 in beef and dairy cattle.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.12-0514DOI Listing

Publication Analysis

Top Keywords

dairy cattle
20
beef dairy
16
stec o157
16
o26 beef
12
beef cattle
12
beef
9
prevalence shiga
8
shiga toxin-producing
8
toxin-producing escherichia
8
escherichia coli
8

Similar Publications

Metabolic stress and negative energy balance (NEB) are typical undesirable accompanying phenomenon of the post-partum period in dairy cattle. They negatively affect not only milk production but also the reproductive abilities of the cow, and it is therefore desirable to recognize NEB early to prevent its development. Metabolic stress markers are traditionally total cholesterol (tChol), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB) and triacylglycerols (TAGs).

View Article and Find Full Text PDF

Accurate genetic evaluations rely on high-quality phenotypic data; however, measurement errors and data inconsistencies-such as those arising from unsupervised or incomplete sources-pose challenges to their reliability. This study investigates the effect of response errors on genetic evaluations across continuous and categorical traits. We introduce an additive measurement error model to illustrate how phenotypic errors influence genetic effects and variance estimation.

View Article and Find Full Text PDF

Optimizing calf feeding strategies is critical for improving performance, health, and weaning transitions of preweaning animals. Despite the updated National Academies of Sciences, Engineering, and Medicine (NASEM, 2021) , decision support tools integrating these equations for simulating optimized calf feeding strategies remain limited. To address this gap, we developed and tested the CalfSim, a free, user-friendly decision support tool designed to simulate and optimize feeding plans for dairy calves.

View Article and Find Full Text PDF

SLICK1 is an allelic variant of the prolactin receptor () that is found in Senepol beef cattle. The presence of a single copy of this allele produces a short hair coat and confers heat tolerance. We aimed to determine the effect of 2 copies of this allele on milking performance of dairy cattle.

View Article and Find Full Text PDF

Methane (CH), carbon dioxide (CO), and oxygen (O) are the major gases produced by dairy cattle as a result of rumen fermentation and metabolism, and thus, their concentrations are frequently measured as a way of estimating heat production and energy metabolism. A well-utilized method of measuring gas consumption and production to estimate heat production is indirect calorimetry, which requires bags to retain the sampled gases until analysis. The objective of this study was to determine the ability of a polyvinyl fluoride gas bag (PF) and a multilayer fabrication gas bag containing an aluminum layer (NAP) to maintain respiratory gas composition in comparison to a polyethylene terephthalate bag (PET).

View Article and Find Full Text PDF