Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Behavioural and neuroscientific research has provided evidence for a strong functional link between the neural motor system and lexical-semantic processing of action-related language. It remains unclear, however, whether the impact of motor actions is restricted to online language comprehension or whether sensorimotor codes are also important in the formation and consolidation of persisting memory representations of the word's referents. The current study now demonstrates that recognition performance for action words is modulated by motor actions performed during the retention interval. Specifically, participants were required to learn words denoting objects that were associated with either a pressing or a twisting action (e.g., piano, screwdriver) and words that were not associated to actions. During a 6-8-minute retention phase, participants performed an intervening task that required the execution of pressing or twisting responses. A subsequent recognition task revealed a better memory for words that denoted objects for which the functional use was congruent with the action performed during the retention interval (e.g., pepper mill-twisting action, doorbell-pressing action) than for words that denoted objects for which the functional use was incongruent. In further experiments, we were able to generalize this effect of selective memory enhancement of words by performing congruent motor actions to an implicit perceptual (Experiment 2) and implicit semantic memory test (Experiment 3). Our findings suggest that a reactivation of motor codes affects the process of memory consolidation and emphasizes therefore the important role of sensorimotor codes in establishing enduring semantic representations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17470218.2013.777084 | DOI Listing |