Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A critical stage in malaria transmission occurs in the Anopheles mosquito midgut, when the malaria parasite, Plasmodium, ingested with blood, first makes contact with the gut epithelial surface. To understand the response mechanisms within the midgut environment, including those influenced by resident microbiota against Plasmodium, we focus on a midgut bacteria species' intra-specific variation that confers diversity to the mosquito's competency for malaria transmission. Serratia marcescens isolated from either laboratory-reared mosquitoes or wild populations in Burkina Faso shows great phenotypic variation in its cellular and structural features. Importantly, this variation is directly correlated with its ability to inhibit Plasmodium development within the mosquito midgut. Furthermore, this anti-Plasmodium function conferred by Serratia marcescens requires increased expression of the flagellum biosynthetic pathway that is modulated by the motility master regulatory operon, flhDC. These findings point to new strategies for controlling malaria through genetic manipulation of midgut bacteria within the mosquito.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622076PMC
http://dx.doi.org/10.1038/srep01641DOI Listing

Publication Analysis

Top Keywords

serratia marcescens
12
mosquito midgut
12
anopheles mosquito
8
malaria transmission
8
midgut bacteria
8
midgut
6
intra-specific diversity
4
diversity serratia
4
marcescens anopheles
4
mosquito
4

Similar Publications

A kinetic and spectroscopic study of tetrahydrodipicolinate N-succinyltransferase (DapD) from Serratia marcescens and its inactivation by Cu.

Arch Biochem Biophys

September 2025

Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, 800 Lakeshore Drive, Birmingham, AL, USA, 35229. Electronic address:

Tetrahydrodipicolinate N-succinyltransferase (DapD) catalyzes the reaction of tetrahydrodipicolinate (THDP) and succinyl-CoA to form (S)-2-(3-carboxypropanamido)-6-oxoheptanedioic acid and coenzyme A. The enzyme is in the diaminopimelate-lysine biosynthesis pathway which produces two metabolites necessary for the survival and growth of pathogenic bacteria. Since lysine is an essential amino acid to humans, DapD is a potentially safe target for antibiotic therapies.

View Article and Find Full Text PDF

Airborne bioaerosol transmission in hospital waiting corridor: Characteristic, exposure risk and evaluation of prevention strategies.

J Hazard Mater

September 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.

Following the global COVID-19 pandemic, greater attention has been paid to public health safety, especially in hospital environments. In waiting areas with interconnected spaces, complex airflow, unclear bioaerosol dispersion, and the limitations of traditional control methods pose major challenges. This study combined real-world experiments and numerical simulations to investigate the airborne transmission characteristics of pathogen-laden aerosols in a hospital waiting corridor.

View Article and Find Full Text PDF

Nasal microbiome inhabitants with anti- activity.

Microbiol Spectr

September 2025

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.

Unlabelled: (SA) colonizes most mammals but also represents a danger in clinical settings because it evolves resistance against antibiotics, and SA infections represent a leading cause of death worldwide. SA nasal carriage provides the bacterial reservoir for opportunistic infection because clinical strains often match the patient's own nasally carried strain. The global SA carriage rate is typically reported as 25%-30% after sampling subjects once or twice and defining carrier status using culture-based methods.

View Article and Find Full Text PDF

Epidemiology, resistance profiles, and risk factors of multidrug- and carbapenem-resistant Serratia marcescens infections: a retrospective study of 242 cases.

BMC Infect Dis

September 2025

Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.

Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.

View Article and Find Full Text PDF

This study investigated the potential of native arbuscular mycorrhizal fungi (AMF) isolated from organic cassava fields as a biofertilizer, assessing their effects on cassava growth both alone and in combination with plant growth-promoting bacteria (PGPB). AMF spores were isolated from the rhizospheric soil of organic cassava field soils in northeastern Thailand and grouped into two consortia based on spore size: A45 and A75. Molecular identification revealed that both consortia were dominated by the genera Claroideoglomus and Entrophospora, with Paraglomus additionally present in the A45 consortium.

View Article and Find Full Text PDF