A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Measuring in-use ship emissions with international and U.S. federal methods. | LitMetric

Measuring in-use ship emissions with international and U.S. federal methods.

J Air Waste Manag Assoc

Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, USA.

Published: March 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Regulatory agencies have shifted their emphasis from measuring emissions during certification cycles to measuring emissions during actual use. Emission measurements in this research were made from two different large ships at sea to compare the Simplified Measurement Method (SMM) compliant with the International Maritime Organization (IMO) NOx Technical Code to the Portable Emission Measurement Systems (PEMS) compliant with the US. Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) Part 1065 for on-road emission testing. Emissions of nitrogen oxides (NOx), carbon dioxide (CO2), and carbon monoxide (CO) were measured at load points specified by the International Organization for Standardization (ISO) to compare the two measurement methods. The average percentage errors calculated for PEMS measurements were 6.5%, 0.6%, and 357% for NOx, CO2, and CO, respectively. The NOx percentage error of 6.5% corresponds to a 0.22 to 1.11 g/kW-hr error in moving from Tier III (3.4 g/kW-hr) to Tier I (17.0 g/kW-hr) emission limits. Emission factors (EFs) of NOx and CO2 measured via SMM were comparable to other studies and regulatory agencies estimates. However EF(PM2.5) for this study was up to 26% higher than that currently used by regulatory agencies. The PM2.5 was comprised predominantly of hydrated sulfate (70-95%), followed by organic carbon (11-14%), ash (6-11%), and elemental carbon (0.4-0.8%).

Implications: This research provides direct comparison between the International Maritime Organization and U.S. Environmental Protection Agency reference methods for quantifying in-use emissions from ships. This research provides correlations for NOx, CO2, and CO measured by a PEMS unit (certified by U.S. EPA for on-road testing) against IMO's Simplified Measurement Method for on-board certification. It substantiates the measurements of NOx by PEMS and quantifies measurement error. This study also provides in-use modal and overall weighted emission factors of gaseous (NOx, CO, CO2, total hydrocarbons [THC], and SO2) and particulate pollutants from the main engine of a container ship, which are helpful in the development of emission inventory.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10962247.2012.744370DOI Listing

Publication Analysis

Top Keywords

nox co2
16
regulatory agencies
12
measuring emissions
8
simplified measurement
8
measurement method
8
international maritime
8
maritime organization
8
nox
8
environmental protection
8
protection agency
8

Similar Publications