Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

Download full-text PDF

Source
http://dx.doi.org/10.1115/1.4023382DOI Listing

Publication Analysis

Top Keywords

pressure drops
12
flow rates
12
flow
9
pressure flow
8
giant aneurysm
8
rates fluid
8
fluid properties
8
solution strategies
8
physical model
8
peak systolic
8

Similar Publications

Background/aims: In cytomegalovirus-induced anterior uveitis (CMV-AU), frequent recurrences are the primary cause of glaucomatous damage and corneal endothelial cell loss, yet factors influencing such recurrences remain unclear. Our study aims to investigate the impact of glaucoma surgery (GS) on recurrence rate in patients with CMV-AU.

Methods: This retrospective study included 149 immunocompetent patients with CMV-AU treated with antiviral medication following PCR confirmation.

View Article and Find Full Text PDF

Introduction: To evaluate how stepwise enlargement in the mesial root canals of mandibular first molars affect shaping outcomes and irrigant dynamics.

Methods: The shaping ability and irrigant flow patterns in mesial canals of mandibular first molars enlarged with ProTaper Next instruments (25/.06v, 30/.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) has been recognized as one of the three main gasotransmitters found extensively in tissues, regulating functions crucial for survival. In many pathological cases, its concentration drops from the intrinsic level, impairing healing and leading to unmet regeneration outcomes. A hybrid microparticle/hydrogel system was developed to sustainably release HS and regulate its level in deprived tissues.

View Article and Find Full Text PDF

Purpose: To investigate hand function and eye drop instillation success in adults with and without glaucoma.

Design: Cross-sectional pilot study.

Subjects: Adults aged ≥ 65 years with glaucoma who use eye drops daily and adults aged 65+ without glaucoma who do not regularly use eye drops.

View Article and Find Full Text PDF

Advances in fluidic droplet generation both necessitate and enable accessible, high throughput methods to optimize formulations by measuring surface tension. One fluidic approach involves creating extensional flow using constrictions. Droplets deform within a constriction, and then experience extensional flow upon exiting into a wider channel.

View Article and Find Full Text PDF