Engineering of functional, perfusable 3D microvascular networks on a chip.

Lab Chip

School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, Korea.

Published: April 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generating perfusable 3D microvessels in vitro is an important goal for tissue engineering, as well as for reliable modelling of blood vessel function. To date, in vitro blood vessel models have not been able to accurately reproduce the dynamics and responses of endothelial cells to grow perfusable and functional 3D vascular networks. Here we describe a microfluidic-based platform whereby we model natural cellular programs found during normal development and angiogenesis to form perfusable networks of intact 3D microvessels as well as tumor vasculatures based on the spatially controlled co-culture of endothelial cells with stromal fibroblasts, pericytes or cancer cells. The microvessels possess the characteristic morphological and biochemical markers of in vivo blood vessels, and exhibit strong barrier function and long-term stability. An open, unobstructed microvasculature allows the delivery of nutrients, chemical compounds, biomolecules and cell suspensions, as well as flow-induced mechanical stimuli into the luminal space of the endothelium, and exhibits faithful responses to physiological shear stress as demonstrated by cytoskeleton rearrangement and increased nitric oxide synthesis. This simple and versatile platform provides a wide range of applications in vascular physiology studies as well as in developing vascularized organ-on-a-chip and human disease models for pharmaceutical screening.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3lc41320aDOI Listing

Publication Analysis

Top Keywords

blood vessel
8
endothelial cells
8
engineering functional
4
perfusable
4
functional perfusable
4
perfusable microvascular
4
microvascular networks
4
networks chip
4
chip generating
4
generating perfusable
4

Similar Publications

In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.

View Article and Find Full Text PDF

The vascular endothelium is responsible for regulating vascular tone, maintaining fluid homeo-stasis, and preventing platelet aggregation, exhibits regulatory properties in vasorelaxation and vasoconstriction - it produces, among others, nitric oxide and endothelin. The imbalance of vasoactive molecules leads to the loss of their function, known as endothelial dysfunction. Impaired endothelial function is observed in people with metabolic disorders, often preceding the onset of the disease by several years.

View Article and Find Full Text PDF

The Systemic Immune-Inflammation Index Predicts Long-Term Outcomes in Patients With Unstable Angina and Diabetes After Revascularization.

Rev Cardiovasc Med

August 2025

Department of Cardiology, Beijing AnZhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, 100029 Beijing, China.

Background: The incidence of unstable angina (UA), a type of cardiovascular disease (CVD), has increased in recent years. Meanwhile, timely percutaneous coronary intervention (PCI) or percutaneous transluminal coronary angioplasty (PTCA) procedures are crucial for patients with UA who also have diabetes mellitus (DM). Additionally, exploring other factors that may influence the prognosis of these patients could provide long-term benefits.

View Article and Find Full Text PDF

Organoids: their emerging essential role in pathological mechanisms and drug discovery of diabetes and its complications.

Front Pharmacol

August 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.

Diabetes mellitus is a metabolic disease with a high global prevalence, which affects blood vessels throughout the entire body. As the disease progresses, it often leads to complications, including diabetic retinopathy and nephropathy. Currently, in addition to traditional cellular and animal models, more and more organoid models have been used in the study of diabetes and have broad application prospects in the field of pharmacological research.

View Article and Find Full Text PDF

Background: Paediatric patients who underwent surgery for mitral regurgitation (MR) have a high risk of recurrence or death; however, no prediction tool has been developed to risk-stratify this challenging subpopulation.

Methods: In this multicentre cohort study, paediatric patients undergoing surgery for congenital MR in Shanghai Children's Medical Center in January 1st, 2009-December 31st, 2022 were included for analysis while those had a combination with infective endocarditis, anomalous left coronary artery from the pulmonary artery, rheumatic valvular disease, connective tissue disease, or single ventricle were excluded. A Cox regression model predictive of the primary outcome (a composite of mortality or mitral valve [MV] re-operation) was derived and converted to a point-based risk score.

View Article and Find Full Text PDF