98%
921
2 minutes
20
Silicon (Si)-based solar cell is by far the most established solar cell technology. The surface of a Si solar cell is usually covered by a layer of transparent material to protect the device from corrosion, contamination and mechanical damage. Here, we replaced this protection layer by a thin layer film of polydimethysiloxane nanowires. Based on this layer and using the conductive layer on the surface of the wavy Si, we have fabricated a triboelectric nanogenerator (TENG). The solar cell and the TENG form a hybrid energy cell for simultaneously harvesting solar and mechanical energies. The hybrid energy cell can be directly used for self-powered electrodegradation of rhodamine B, where the degradation percentage is up to 98% in 10 min. Moreover, the produced energy can also be stored in the Li-ion batteries for driving some personal electronics such as a red laser diode and a commercial cell phone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn400361p | DOI Listing |
Nano Lett
September 2025
School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
Passivating detrimental defects is essential for improving perovskite solar cells (PSCs) performance. While hydrogen interstitials are often considered harmful, their role in defect passivation remains unclear. Using nonadiabatic molecular dynamics, we uncover a self-passivation mechanism between hydrogen (H) and bromine (Br) interstitials in all-inorganic CsPbBr perovskites.
View Article and Find Full Text PDFJ Comput Chem
September 2025
Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Bangladesh.
This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China.
The donor/acceptor (D/A) interfaces in bulk heterojunction (BHJ) organic solar cells (OSCs) critically govern exciton dissociation and molecular diffusion, determining both efficiency and stability. Herein, we design a double-cable conjugated polymer, SC-1F, to insert into a physically-blended D/A system to optimize the interface. We have found that SC-1F spontaneously segregates to the interface through favorable miscibility and heterogeneous nucleation with the acceptor.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna, 46980, Spain.
Formamidinium lead iodide perovskite compositions have a low open circuit voltage deficit and thus a higher power conversion efficiency (PCE) potential. However, their low bandgap makes it difficult to achieve a semitransparent perovskite solar cell (ST-PSC) with a high average visible transmittance (AVT) and thus, a high light utilization efficiency (LUE). Attaining a high AVT in such low bandgap perovskite‑based semitransparent solar cells requires the perovskite layer to be very thin (thickness < ≈100 nm) and the rear electrode to be made of a transparent conductive oxide.
View Article and Find Full Text PDFInt J Cosmet Sci
September 2025
Department of Pharmaceutics and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Objective: The objective of this work is to investigate different sunscreens and Viscogel group organoclays for the preparation of new intercalated sunscreens to improve the effectiveness and safety in photoprotection using new approach methodology (NAMs).
Methods: For this study, we examined Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl methoxycinnamate (OMC), Bemotrizinol (BEMT) and Viscogel S4®, S7®, and B8® using a set of Saccharomyces cerevisiae mutant strains that are sensitive to UVA, UVB and Solar Simulated Light (SSL) to evaluate their photoprotective and mutagenic potential. Additionally, we developed delaminated nanocomposites by chemical intercalation reactions followed by ultrasonic treatment to enhance clay exfoliation.