Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retroviral gene transfer has proven therapeutic potential in clinical gene therapy trials but may also cause abnormal cell growth via perturbation of gene expression in the locus surrounding the insertion site. By establishing clonal marks, retroviral insertions are also used to describe the regenerative potential of individual cells. Deep sequencing approaches have become the method of choice to study insertion profiles in preclinical models and clinical trials. We used a protocol combining ligation-mediated polymerase chain reaction (LM-PCR) and pyrosequencing for insertion profiling and quantification in cells of various tissues transduced with various retroviral vectors. The presented method allows simultaneous analysis of a multitude of DNA-barcoded samples per pyrosequencing run, thereby allowing cost-effective insertion screening in studies with multiple samples. In addition, we investigated whether the number of pyrosequencing reads can be used to quantify clonal abundance. By comparing pyrosequencing reads against site-specific quantitative PCR and by performing spike-in experiments, we show that considerable variation exists in the quantification of insertion sites even when present in the same clone. Our results suggest that the protocol used here and similar approaches might misinterpret abundance clones defined by insertion sites, unless careful calibration measures are taken. The crucial variables causing this variation need to be defined and methodological improvements are required to establish pyrosequencing reads as a quantification measure in polyclonal situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732125PMC
http://dx.doi.org/10.1089/hgtb.2012.175DOI Listing

Publication Analysis

Top Keywords

pyrosequencing reads
12
insertion sites
8
pyrosequencing
6
insertion
6
evaluating ligation-mediated
4
ligation-mediated pcr
4
pcr pyrosequencing
4
pyrosequencing method
4
method detection
4
detection clonal
4

Similar Publications

Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.

View Article and Find Full Text PDF

DeepMobilome: predicting mobile genetic elements using sequencing reads of microbiomes.

Brief Bioinform

September 2025

Department of Computer Science, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.

Motivation: Mobile genetic elements (MGEs) play an important role in facilitating the acquisition of antibiotic resistance genes (ARGs) within microbial communities, significantly impacting the evolution of antibiotic resistance. Understanding the mechanism and trajectory of ARG acquisition requires a comprehensive analysis of the ARG-carrying mobilome-a collective set of MGEs carrying ARGs. However, identifying the mobilome within complex microbiomes poses considerable challenges.

View Article and Find Full Text PDF

SyFi: generating and using sequence fingerprints to distinguish SynCom isolates.

Microb Genom

September 2025

Department of Biology, Science for Life, Plant-Microbe Interactions, Utrecht University, Netherlands, 3584CH Utrecht.

The plant root microbiome is a complex community shaped by interactions among bacteria, the plant host and the environment. Synthetic community (SynCom) experiments help disentangle these interactions by inoculating host plants with a representative set of culturable microbial isolates from the natural root microbiome. Studying these simplified communities provides valuable insights into microbiome assembly and function.

View Article and Find Full Text PDF

The gene regulation in Mycobacterium tuberculosis by different sigma factors, including the principal sigma factor, sigmaA (SigA), is poorly understood. Here, we have developed a modified genomic systematic evolution of ligands by exponential enrichment (SELEX)-Seq approach that identifies 350 new SigA-binding sites in M. tuberculosis.

View Article and Find Full Text PDF

Background: Detecting microbes in amniotic fluids via amniocentesis represents the standard method for diagnosing intrauterine infections. Given its similarity to metagenomic next-generation sequencing, copy number variation sequencing (CNV-seq) data may also contain microbial sequences. This exploratory study aimed to investigate the feasibility of prenatal CNV-seq for detecting () in amniotic fluids and to evaluate the pregnancy outcomes in -positive cases.

View Article and Find Full Text PDF