98%
921
2 minutes
20
Genomic instability and copy number alterations in cancer are generally associated with poor prognosis; however, recent studies have suggested that extreme levels of genomic aberrations may be beneficial for the survival outcome for patients with specific tumour types. We investigated the extent of genomic instability in predominantly high-grade serous ovarian cancers (SOC) using two independent datasets, generated in Norway (n = 74) and Australia (n = 70), respectively. Genomic instability was quantified by the Total Aberration Index (TAI), a measure of the abundance and genomic size of copy number changes in a tumour. In the Norwegian cohort, patients with TAI above the median revealed significantly prolonged overall survival (p<0.001) and progression-free survival (p<0.05). In the Australian cohort, patients with above median TAI showed prolonged overall survival (p<0.05) and moderately, but not significantly, prolonged progression-free survival. Results were confirmed by univariate and multivariate Cox regression analyses with TAI as a continuous variable. Our results provide further evidence supporting an association between high level of genomic instability and prolonged survival of high-grade SOC patients, possibly as disturbed genome integrity may lead to increased sensitivity to chemotherapeutic agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3553118 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054356 | PLOS |
Front Cell Dev Biol
August 2025
Department of Hepatobiliary Surgery, The First Hospital of Putian City, Chengxiang, Fujian, China.
Background: USP37, a versatile deubiquitinase, plays a pivotal role in numerous cellular functions. Although its involvement in cancer development is well-established, the comprehensive pan-cancer analysis of USP37 remains relatively uncharted.
Methods: RNA sequencing data from both normal and cancerous tissues were retrieved from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases.
Cancer Med
September 2025
Division of Clinical & Translational Cancer Research, Medical Sciences Campus, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico.
Background: Gastric cancer (GC) is the fourth leading cause of cancer-related death globally. Tumor profiling has revealed actionable gene alterations that guide treatment strategies and enhance survival. Among Hispanics living in Puerto Rico (PRH), GC ranks among the top 10 causes of cancer-related death.
View Article and Find Full Text PDFHum Pathol
September 2025
Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:
Renal cell carcinoma (RCC) is a heterogeneous kidney malignancy driven by complex genetic, molecular, and metabolic alterations. Emerging evidence implicates centrosome dysfunction and autophagy dysregulation in RCC initiation, progression, and resistance to therapy. The centrosome plays a critical role in mitotic fidelity, and its dysfunction often leads to chromosomal and genomic instability.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India. Electronic address:
The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.
View Article and Find Full Text PDFNeurol Res
September 2025
Henan Provincial People's Hospital, Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Zhengzhou, China.
Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.
Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.