98%
921
2 minutes
20
Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the evolution of pathogenesis and virulence in the expansion of the genus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554770 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054287 | PLOS |
Eur J Clin Microbiol Infect Dis
September 2025
School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.
Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.
Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.
J Microbiol Immunol Infect
August 2025
Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Acinetobacter seifertii, a recently identified member of the Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex, has emerged as a cause of severe human infections. It is closely related to Acinetobacter nosocomialis, a major pathogen of the Acb complex. Here, we aimed to explore the clinical and molecular differences between these two species.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Plant Pathology, University of California Davis, Davis, California, USA.
The complex includes high-priority, multidrug-resistant pathogens for which novel antibiotics are urgently needed. Many bacterial strains from this complex harbor a so-called gene cluster that codes for the catabolism of indole-3-acetic acid (IAA). Here, we demonstrate that possession and expression of genes represent an Achilles' heel for species, which can be exploited to suppress bacterial growth by treatment with IAA and its analog 5-chloro-IAA.
View Article and Find Full Text PDFMicroorganisms
August 2025
Department of Pediatric Diseases, Medical University of Pleven, 5800 Pleven, Bulgaria.
is one of the most challenging nosocomial pathogens associated with a variety of hospital infections, such as ventilator-associated pneumonia, wound and urinary tract infections, meningitis, and sepsis, primarily in patients treated in critical care settings. Its classification as a high-priority pathogen is due to the emergence of multidrug-resistant strains in healthcare environments and its tendency to spread clonally. belongs to the - (Acb) complex, a group of genotypically and phenotypically similar species.
View Article and Find Full Text PDFNat Commun
August 2025
Institut Langevin, ESPCI Paris, Université PSL, CNRS, Paris, France.
Cellular imaging of the human anterior eye is critical for understanding complex ophthalmic diseases, yet current techniques are constrained by a limited field of view or insufficient contrast. Here, we demonstrate that Ernst Abbe's foundational principles on the interference nature of transmission microscopy can be applied in vivo to the human eye to overcome these limitations. The transmission geometry in the eye is achieved by projecting illumination onto the posterior eye (sclera) and using the back-reflected light as a secondary illumination source for anterior eye structures.
View Article and Find Full Text PDF