98%
921
2 minutes
20
We describe the fabrication of optimized plasmonic substrates in the form of immobilized nanorod assemblies (INRA) for surface-enhanced Raman spectroscopy (SERS). Included are high-resolution scanning electron micrograph (SEM) images of the surface structures, along with a mechanistic description of their growth. It is shown that, by varying the size of support microspheres, the surface plasmon resonance is tuned between 330 and 1840 nm. Notably, there are predicted optimal microsphere sizes for each of the commonly used SERS laser wavelengths of 532, 633, 785, and 1064 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac303269w | DOI Listing |
Mikrochim Acta
September 2025
Faculty of Science, Shenyang University of Chemical Technology, Shenyang, 110142, China.
A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Simultaneous sensing and quantification of pharmaceutically active compounds (PhACs) are crucial for protecting the environment and maintaining long-term ecological sustainability. This study focuses on the bio-based synthesis of BiS-ZnO nanocomposites (BiS-ZnO(bio)) using bio-extract for dual-analyte selective and simultaneous electrochemical monitoring of phenylbutazone (PBZ) and sulfamethoxazole (SMZ) in the environmental matrices. BiS-ZnO(bio) exhibited ZnO(bio) nanostructures embedded on BiS(bio) nanorods with an average rod length of 1409.
View Article and Find Full Text PDFMikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China.
An advanced electrochemical immunosensor platform was designed for the precise quantification of cortisol. The sensor design integrates graphene oxide-silicon carbide (GO-SiC) nanocomposites onto a glassy carbon electrode (GCE). Denatured bovine serum albumin (d-BSA) and an anti-cortisol antibody were immobilized on the GO-SiC/GCE surface as part of the immunosensor's design.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
The practical application of lithium‑sulfur (LiS) batteries is often restricted by the uncontrolled diffusion of lithium polysulfides (LiPSs) and their intrinsically sluggish redox kinetics. To address these limitations, we designed a multidimensional composite separator by anchoring Zn-Co-Ni-S nanocrystals onto alkalized two-dimensional transition metal carbide/nitride (MXene) nanosheets, followed by the incorporation of one-dimensional carbon nanotubes (CNTs), yielding a robust and highly conductive interfacial architecture. This multidimensional configuration combines physical confinement, strong chemisorption, and catalytic enhancement to regulate sulfur redox behavior effectively.
View Article and Find Full Text PDF