98%
921
2 minutes
20
Background: MicroRNAs (miRNAs) regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19). However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely.
Results: To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3' UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element.
Conclusions: Seven of the eight barley miRNA genes characterized in this study contain introns with their respective transcripts undergoing developmentally specific processing events prior to the dicing out of pre-miRNA species from their pri-miRNA precursors. The observed tendency to maintain the intron encoding miR156g within the transcript, and preferences in splicing the miR1126-harboring intron, may suggest the existence of specific regulation of the levels of intron-derived miRNAs in barley.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558349 | PMC |
http://dx.doi.org/10.1186/1471-2164-14-34 | DOI Listing |
Front Plant Sci
August 2025
Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.
Climate change is leading to increases in extreme weather events, notably increasing both droughts and floods, which undermine food security. Although each stress individually has been well studied, little is known about the response of cereals to successive water stresses, condition that often occurs in real-world scenarios. To address this gap, we have compared physiological responses of wheat and barley cultivars to cycles of drought and flooding.
View Article and Find Full Text PDFJ Sci Med Sport
August 2025
School of Medical and Health Sciences, Edith Cowan University, Australia.
Objectives: The objective of this study is to describe and compare competition injuries in combat sports using two sources: (1) athletes' self-reported injury-related health problems (HPs) seven days after the competition, and (2) injury reports completed by ringside physicians immediately after each contest.
Design: Cross-sectional study of 29 combat sport events in Western Australia between August 2022 and November 2023.
Methods: Athletes reported injury-related HPs through an online questionnaire that included the Oslo Sports Trauma Research Centre Questionnaire on Health Problems 2 (OSTRC-H2).
Res Vet Sci
September 2025
Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Murcia, Spain. Electronic address:
Recent years have seen advances in clinical biochemistry of domestic animals which have highlighted comparative differences between species and have also identified fundamental aspects of the biochemical mechanisms in physiological conditions and disease, that have implications across species, including human, health and welfare. From investigations in diverse species using biochemical, immunological, proteomic and metabolomic approaches a series of species particularities and unexpected results for some biomarkers have been made. These observations cover (1) the differences between species in the acute phase protein (APP) response to infection and inflammation; (2) the non-hepatic synthesis and release in the mammary gland, adipose tissue and intestine of APP (3) the response of haptoglobin (HP) as a biomarker for stress; (4) observations in non-mammalian species related to hemopexin and HP; (5) the response of bile acids in milk to mastitis; (6) barley serine protease inhibitors being identified in bovine faeces; (7) alkaline phosphatase being present in bovine nasal secretion; (8) saliva findings with analytes such as adenine deaminase showing different activity between saliva and serum and a detergent-like surfactant protein, latherin being found in equine saliva and sweat and (9) serum enzymes and selective muscle protein reaction of Atlantic salmon as an example of the differences in biochemistry between terrestrial and aquatic species.
View Article and Find Full Text PDFJ Basic Microbiol
September 2025
Department of Plant Pathology, CCS Haryana Agricultural University, Hisar, Haryana, India.
Cereal cyst nematode (Heterodera avenae) significantly hampers barley production by causing stunted growth and yield losses. This study explored the biocontrol potential of multitrait root endophytic bacteria isolated from H. avenae-infested barley roots to suppress nematode infestation.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Capão do Leão, Brazil.
Barley is the main raw material for the production of malted beverages. However, it is an important source of food that is gaining attention due to its composition and numerous health benefits. Considering the emerging trend in the development of functional foods, this study used bibliometric analysis to assess the cumulative literature on the impact of drying, storage, and industrial processing (which are crucial for the development of functional foods) on the nutritional value of barley.
View Article and Find Full Text PDF