Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp.

PLoS One

National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.

Published: June 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Populus tomentosa is an economically important tree crop that produces wood for lumber, pulp, paper, and biofuels. Wood quality traits are likely to be strongly affected by the plant hormone gibberellic acid (GA), which regulates growth. GA20Ox encodes one of the major regulatory enzymes of GA biosynthesis and may therefore play a large role in growth and wood quality. Here, linkage disequilibrium (LD) studies were used to identify significant associations between single nucleotide polymorphisms (SNPs) within PtGA20Ox and growth and wood-quality traits of P. tomentosa. We isolated a full-length GA20Ox cDNA from Populus tomentosa by reverse transcription (RT)-PCR; this 1401 bp cDNA clone had an open reading frame of 1158 bp and encoded a protein of 385 amino acids. PtGA20Ox transcripts were maximally expressed in the mature xylem of vascular tissues, suggesting that PtGA20Ox is highly expressed and specifically associated with secondary xylem formation. Resequencing the PtGA20Ox locus of 36 individuals identified 55 SNPs, and the frequency of SNPs was 1/31 bp. The 29 most common SNPs (frequency>0.1) were genotyped in an association population (426 individuals) that was also phenotyped for key growth and wood quality traits. LD did not extend over the entire gene (r(2)<0.1, within 500 bp), demonstrating that a candidate-gene-based LD approach may the best way to understand the molecular basis underlying quantitative variation in this species. SNP- and haplotype-based association analyses indicated that four SNPs (false discovery rate Q<0.05) and 14 haplotypes (P<0.05) were significantly associated with growth and wood properties. The phenotypic variance explained by each SNP ranged from 3.44% to 14.47%. The SNP markers identified in this study can be applied to breeding programs for the improvement of growth and wood-property traits by marker-assisted selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534044PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053116PLOS

Publication Analysis

Top Keywords

growth wood
12
wood quality
12
populus tomentosa
8
quality traits
8
ptga20ox
5
growth
5
wood
5
allelic variation
4
variation ptga20ox
4
ptga20ox associates
4

Similar Publications

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

Background And Aim: Antibiotic resistance has spurred interest in alternative feed additives for poultry. Wood vinegar (WV), a by-product of plant pyrolysis, contains bioactive compounds with antioxidant and antimicrobial properties. This study aimed to evaluate the effects of WV supplementation through drinking water on the cecal microbial population, volatile fatty acid (VFA) concentrations, antioxidant enzyme activity, and apparent ileal nutrient digestibility in broiler chickens.

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Mechanism of Early Branching of Balsa (Ochroma lagopus Swartz).

Physiol Plant

September 2025

CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.

Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.

View Article and Find Full Text PDF

Theory, manipulation experiments and observational studies on biodiversity and ecosystem functioning largely concur that higher intraspecific diversity may increase the overall productivity of populations, buffer against environmental change and stabilize long-term productivity. However, evidence comes primarily from small and short-lived organisms. We tested for effects of genetic diversity on variation in forest growth by combining long-term data on annual individual growth rate (basal area increment (BAI)) with estimates of intrapopulation genetic variation (based on RAD-seq SNPs) for 18 natural pedunculate oak populations.

View Article and Find Full Text PDF

The -hydroxyphenyl (H) unit is an aromatic structure found in lignin, particularly abundant in compression wood and grass, and is derived from the incorporation of -coumaryl alcohol (-CMA). Although the structural and biosynthetic aspects of lignin have been extensively studied, the polymerization reactivity of H-unit during lignification remains poorly understood. In this study, horseradish peroxidase (HRP)-catalyzed homo- and co-oxidative coupling reactions (initial stage of enzymatic dehydrogenative polymerization) with -CMA and/or coniferyl alcohol (CA) were performed to investigate monolignol consumption, dilignol formation, and their potential involvement in subsequent polymerization.

View Article and Find Full Text PDF